tensorflow实现DAN代码
时间: 2023-12-04 15:03:43 浏览: 89
以下是使用TensorFlow实现DAN(Domain-Adversarial Neural Networks)的代码示例:
首先,我们需要导入相关的库和模块:
```python
import tensorflow as tf
import numpy as np
```
接下来,我们定义一个数据集类,用于加载我们的数据:
```python
class DAN_Dataset:
def __init__(self, X, y, domain):
self.X = X
self.y = y
self.domain = domain
def __len__(self):
return len(self.X)
def __getitem__(self, index):
return self.X[index], self.y[index], self.domain[index]
```
然后,我们定义一个MLP作为我们的特征提取器:
```python
class MLP:
def __init__(self, input_dim, hidden_dim, output_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.W1 = tf.Variable(tf.random_normal([self.input_dim, self.hidden_dim]))
self.b1 = tf.Variable(tf.zeros([self.hidden_dim]))
self.W2 = tf.Variable(tf.random_normal([self.hidden_dim, self.output_dim]))
self.b2 = tf.Variable(tf.zeros([self.output_dim]))
def forward(self, x):
hidden = tf.nn.relu(tf.matmul(x, self.W1) + self.b1)
output = tf.matmul(hidden, self.W2) + self.b2
return output
```
接下来,我们定义一个域分类器(domain classifier):
```python
class Domain_Classifier:
def __init__(self, input_dim, hidden_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.W1 = tf.Variable(tf.random_normal([self.input_dim, self.hidden_dim]))
self.b1 = tf.Variable(tf.zeros([self.hidden_dim]))
self.W2 = tf.Variable(tf.random_normal([self.hidden_dim, 1]))
self.b2 = tf.Variable(tf.zeros([1]))
def forward(self, x):
hidden = tf.nn.relu(tf.matmul(x, self.W1) + self.b1)
output = tf.matmul(hidden, self.W2) + self.b2
return output
```
接下来,我们定义一个DAN模型:
```python
class DAN:
def __init__(self, input_dim, hidden_dim, output_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.feature_extractor = MLP(self.input_dim, self.hidden_dim, self.output_dim)
self.domain_classifier = Domain_Classifier(self.output_dim, self.hidden_dim)
def forward(self, x, alpha):
features = self.feature_extractor.forward(x)
reverse_features = self.reverse_gradient(features, alpha)
domain_output = self.domain_classifier.forward(reverse_features)
return features, domain_output
def reverse_gradient(self, X, alpha):
gradient_reversed_tensor = ReverseGradient(alpha)
return gradient_reversed_tensor(X)
class ReverseGradient(tf.keras.layers.Layer):
def __init__(self, alpha):
super(ReverseGradient, self).__init__()
self.alpha = alpha
def call(self, inputs, **kwargs):
return ReverseGradientFunc(self.alpha)(inputs)
class ReverseGradientFunc(tf.keras.backend.Function):
def __init__(self, alpha):
super(ReverseGradientFunc, self).__init__()
self.alpha = alpha
def call(self, inputs, **kwargs):
return inputs
def gradient(self, gradients):
return -self.alpha * gradients
```
现在,我们可以使用上述定义的类和模型来训练我们的DAN模型。
阅读全文