加权灰色马尔科夫模型的代码
时间: 2023-12-14 18:04:22 浏览: 232
加权灰色马尔科夫模型(Weighted Grey Markov Model, WGMM)是一种基于灰色理论和马尔科夫模型的预测方法,常用于处理具有周期性、趋势性和不确定性的时间序列数据。下面是一份用Python实现WGMM的代码示例:
```python
import numpy as np
class WGMM:
def __init__(self, data, k, w):
self.data = data
self.k = k
self.w = w
def _normalize(self, X): # 数据归一化
return (X - np.min(X)) / (np.max(X) - np.min(X))
def _calculate_weights(self): # 计算权重
X = self._normalize(self.data)
n = len(X)
weights = np.zeros((n, self.k))
for i in range(self.k):
weights[i][0] = X[i]
for i in range(self.k, n):
weights[i][0] = X[i]
for j in range(1, self.k):
weights[i][j] = np.sum(X[i-j:i]) / np.sum(X[i-j+1:i+1])
return weights
def _calculate_probabilities(self, weights): # 计算概率矩阵
n = len(weights)
probabilities = np.zeros((n-1, self.k, self.k))
for i in range(1, n):
for j in range(self.k):
row_sum = np.sum(weights[i-1])
if row_sum == 0:
continue
for l in range(self.k):
probabilities[i-1][j][l] = (weights[i-1][j] * self.w[l] + weights[i][l]) / row_sum
return probabilities
def fit(self): # 训练模型
weights = self._calculate_weights()
probabilities = self._calculate_probabilities(weights)
self.weights = weights
self.probabilities = probabilities
def predict(self, steps=1): # 预测
n = len(self.data)
X = self._normalize(self.data)
y_pred = np.zeros(steps)
for i in range(n, n+steps):
if i == n:
y_pred[i-n] = X[i-1]
else:
y_i = np.zeros(self.k)
for j in range(self.k):
y_i[j] = np.sum(X[i-j:i] * self.weights[i-1][j])
y_pred[i-n] = np.sum([y_i[l] * self.probabilities[i-n-1][j][l] for j in range(self.k) for l in range(self.k)])
return y_pred
```
其中,`data`是输入的时间序列数据,`k`是WGMM模型的阶数,`w`是权重向量,表示不同阶数的权重。`fit()`方法用于训练模型,`predict()`方法用于预测未来的时间序列数据。
阅读全文