如下:请根据这些数据,按照以下步骤进行灰色马尔科夫链模型和加权灰色马尔科夫链模型的分析,用详细代码给出分析过程,代码一定要正确!并尽可能给出相应的图形展示: 1. 对数据进行预处理,以便于后续的模型分析和预测。 2. 对数据进行灰色马尔科夫链建模,得到预测值,计算模型参数。 3. 对模型预测的结果进行检验 ,包括残差检查 、关联度检验和后验差检验。 4. 划分系统状态,检验所得序列是否具有马氏性。 5. 计算灰色马尔可夫链理论下的状态转移概率矩阵。 6. 对灰色马尔科夫链模型进行预测,得到未来的状态概率分布和预测值。 8. 用加权灰色马尔科夫链模型进行建模,包括对权重的选择和调整。 9. 计算加权灰色马尔可夫链理论下的状态转移概率矩阵,对加权灰色马尔科夫链模型进行预测,得到未来的预测值。 8. 可视化以上所有的预测结果。 data close 2023-2-1 264.89 2023-2-2 258.94 2023-2-3 253.44 2023-2-6 250.33 2023-2-7 248.94 2023-2-8 248.45 2023-2-9 251.66 2023-2-10 247.75 2023-2-13 255.56 2023-2-14 250.58 2023-2-15 249.22 2023-2-16 246.22 2023-2-17 233.44 2023-2-20 233.59 2023-2-21 230.56 2023-2-22 227.48 2023-2-23 229.57 2023-2-24 225.22 2023-2-27 222.83 2023-2-28 224.39

时间: 2023-08-03 07:06:07 浏览: 84
首先,导入所需的库:numpy、pandas、matplotlib、math。代码如下: ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt import math ``` 1. 对数据进行预处理 读取数据,并将数据按照时间顺序进行排序。代码如下: ```python df = pd.read_csv('data.csv', delimiter='\t') df = df.sort_values(by=['date']) ``` 对于灰色马尔科夫链模型,需要对数据进行一次累加生成新的序列。代码如下: ```python df['cumulative'] = df['close'].cumsum() ``` 2. 对数据进行灰色马尔科夫链建模 根据灰色马尔科夫链模型,需要首先将原始数据序列转化为矩阵。代码如下: ```python n = len(df) X0 = np.array(df['cumulative'][:-1]) X1 = np.array(df['cumulative'][1:]) X1 = X1.reshape((n-1, 1)) B = np.ones((n-1, 2)) B[:, 1] = -1 * np.arange(1, n) Y = df['close'][1:].values ``` 接着,可以使用最小二乘法求解出参数a和u,并计算出残差序列e。代码如下: ```python a, u = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Y) e = Y - a*X1[:, 0] - u ``` 3. 对模型预测的结果进行检验 首先,可以绘制出原始数据序列和预测序列的图像。代码如下: ```python Y_predict = np.zeros(n-1) Y_predict[0] = df['cumulative'][0] for i in range(1, n-1): Y_predict[i] = (df['cumulative'][0] - u/a) * math.exp(-a*i) + u/a df['predict'] = np.concatenate(([df['close'][0]], np.diff(Y_predict))) plt.plot(df['date'], df['close'], 'b-', label='Original') plt.plot(df['date'], df['predict'], 'r-', label='Predict') plt.legend(loc='upper left') plt.xticks(rotation=45) plt.show() ``` 接着,可以计算出残差序列的均值、标准差和相关系数,并绘制出残差序列的图像。代码如下: ```python mean_e = np.mean(e) std_e = np.std(e) corrcoef_e = np.corrcoef(e[:-1], e[1:])[0][1] df['e'] = np.concatenate(([0], e)) plt.plot(df['date'], df['e'], 'b-') plt.xticks(rotation=45) plt.show() ``` 最后,可以使用后验差检验来检验预测精度。代码如下: ```python delta = np.abs(e) / Y[1:] C = delta.mean() P = (np.sum(delta) - delta.max()) / np.sum(delta) Q = 1 - P print('C: %.4f' % C) print('P: %.4f' % P) print('Q: %.4f' % Q) ``` 4. 划分系统状态,检验所得序列是否具有马氏性 首先,需要将残差序列划分为两个状态,即正向和负向。代码如下: ```python e_mean = np.mean(e) df['state'] = df['e'].apply(lambda x: 1 if x >= e_mean else -1) ``` 接着,可以计算出状态转移概率矩阵,并绘制出状态转移图。代码如下: ```python P11 = np.sum(df['state'][1:] == 1) / (n-2) P12 = 1 - P11 P21 = 1 - P11 P22 = np.sum(df['state'][1:] == -1) / (n-2) P = np.array([[P11, P12], [P21, P22]]) print('P: ') print(P) plt.figure(figsize=(4, 4)) plt.imshow(P, cmap='Blues') plt.xticks([0, 1], ['1', '-1']) plt.yticks([0, 1], ['1', '-1']) for i in range(2): for j in range(2): plt.text(j, i, '%.2f' % P[i][j], ha='center', va='center', fontsize=18) plt.show() ``` 5. 计算灰色马尔可夫链理论下的状态转移概率矩阵 根据灰色马尔科夫链模型,可以计算出灰色马尔可夫链理论下的状态转移概率矩阵。代码如下: ```python alpha = 0.5 P_predict = np.zeros((2, 2)) P_predict[0][0] = alpha + (1-alpha)*P[0][0] P_predict[0][1] = (1-alpha)*P[0][1] P_predict[1][0] = (1-alpha)*P[1][0] P_predict[1][1] = alpha + (1-alpha)*P[1][1] print('P_predict: ') print(P_predict) ``` 6. 对灰色马尔科夫链模型进行预测 根据灰色马尔科夫链模型,可以预测出未来的状态概率分布和预测值。代码如下: ```python state = np.zeros(n) state[0] = df['state'][0] for i in range(1, n): state[i] = np.random.choice([-1, 1], p=P_predict[int(state[i-1] == 1)]) df['state_predict'] = state df['predict_gm'] = 0 for i in range(1, n): if df['state_predict'][i] == 1: df['predict_gm'][i] = df['predict_gm'][i-1] + abs(df['predict'][i]) else: df['predict_gm'][i] = df['predict_gm'][i-1] - abs(df['predict'][i]) plt.plot(df['date'], df['predict_gm'], 'r-', label='Predict') plt.legend(loc='upper left') plt.xticks(rotation=45) plt.show() ``` 7. 用加权灰色马尔科夫链模型进行建模 根据加权灰色马尔科夫链模型,需要首先确定权重的选择和调整。这里使用指数平均法来确定权重,并设置初始权重为0.5。代码如下: ```python alpha = 0.5 w = np.zeros(n) w[0] = 0.5 for i in range(1, n): w[i] = alpha * w[i-1] + (1-alpha) * (abs(df['predict'][i]) / abs(df['e'][i])) df['w'] = w ``` 接着,根据加权灰色马尔科夫链模型,需要对数据进行二次累加。代码如下: ```python df['cumulative2'] = df['cumulative'].cumsum() ``` 接着,可以将加权灰色马尔科夫链模型转化为灰色马尔科夫链模型,并使用最小二乘法求解出参数a和u,并计算出残差序列e。代码如下: ```python X0_w = np.array(df['cumulative2'][:-1]) X1_w = np.array(df['cumulative2'][1:]) X1_w = X1_w.reshape((n-1, 1)) Y_w = df['close'][1:].values B_w = np.ones((n-1, 2)) B_w[:, 1] = -1 * np.arange(1, n) W = np.diag(df['w'][1:]) a_w, u_w = np.dot(np.dot(np.dot(np.linalg.inv(np.dot(np.dot(B_w.T, W), B_w)), B_w.T), W), Y_w) e_w = Y_w - a_w*X1_w[:, 0] - u_w ``` 8. 计算加权灰色马尔可夫链理论下的状态转移概率矩阵,对加权灰色马尔科夫链模型进行预测,得到未来的预测值 根据加权灰色马尔科夫链模型,可以计算出加权灰色马尔可夫链理论下的状态转移概率矩阵,并预测出未来的预测值。代码如下: ```python alpha_w = 0.5 P_predict_w = np.zeros((2, 2)) P_predict_w[0][0] = alpha_w + (1-alpha_w)*P[0][0] P_predict_w[0][1] = (1-alpha_w)*P[0][1] P_predict_w[1][0] = (1-alpha_w)*P[1][0] P_predict_w[1][1] = alpha_w + (1-alpha_w)*P[1][1] print('P_predict_w: ') print(P_predict_w) state_w = np.zeros(n) state_w[0] = df['state'][0] for i in range(1, n): state_w[i] = np.random.choice([-1, 1], p=P_predict_w[int(state_w[i-1] == 1)]) df['state_predict_w'] = state_w df['predict_gm_w'] = 0 for i in range(1, n): if df['state_predict_w'][i] == 1: df['predict_gm_w'][i] = df['predict_gm_w'][i-1] + abs(df['predict'][i]) else: df['predict_gm_w'][i] = df['predict_gm_w'][i-1] - abs(df['predict'][i]) plt.plot(df['date'], df['predict_gm_w'], 'r-', label='Predict') plt.legend(loc='upper left') plt.xticks(rotation=45) plt.show() ``` 9. 可视化以上所有的预测结果 绘制出原始数据序列、灰色马尔科夫链模型预测序列和加权灰色马尔科夫链模型预测序列的图像。代码如下: ```python plt.plot(df['date'], df['close'], 'b-', label='Original') plt.plot(df['date'], df['predict_gm'], 'r-', label='Predict GM') plt.plot(df['date'], df['predict_gm_w'], 'g-', label='Predict WGM') plt.legend(loc='upper left') plt.xticks(rotation=45) plt.show() ```

相关推荐

最新推荐

recommend-type

灰色马尔科夫模型在城镇职工年平均收入预测中的应用

灰色马尔科夫模型在城镇职工年平均收入预测中的应用,李昊,钱存华,本文对灰色预测模型的优点和不足进行了简要的分析说明,并基于马尔科夫链对灰色模型进行修正,建立了灰色马尔科夫预测模型。该模�
recommend-type

隐马尔科夫模型HMM的介绍以及应用

隐马尔科夫模型HMM的介绍以及应用,用于语音识别,语言处理,机器视觉等。
recommend-type

空间马尔可夫链软件文档

该软件包含了论文中常用的,传统马尔科夫链与空间马尔可夫链,准备好数据即可一键生成结果,方便快捷。资源中是软件的文档。
recommend-type

HMM隐马尔科夫模型学习经典范例

隐马尔科夫模型(HMM)依然是读者访问“我爱自然语言处理”的一个热门相关关键词,我曾在《HMM学习最佳范例与崔晓源的博客》中介绍过国外的一个不错的HMM学习教程,并且国内崔晓源师兄有一个相应的翻译版本,不过这...
recommend-type

node-v9.6.0-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

设计算法实现将单链表中数据逆置后输出。用C语言代码

如下所示: ```c #include <stdio.h> #include <stdlib.h> // 定义单链表节点结构体 struct node { int data; struct node *next; }; // 定义单链表逆置函数 struct node* reverse(struct node *head) { struct node *prev = NULL; struct node *curr = head; struct node *next; while (curr != NULL) { next
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。