降噪自编码器C语言实现
时间: 2024-04-14 18:22:33 浏览: 190
降噪自编码器是一种无监督学习算法,用于学习输入数据的低维表示。它通过在输入数据中引入噪声,并尝试从噪声数据中重构原始输入数据来训练模型。以下是一个简单的降噪自编码器的C语言实现示例:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define INPUT_SIZE 10
#define HIDDEN_SIZE 5
#define OUTPUT_SIZE 10
#define LEARNING_RATE 0.01
#define EPOCHS 1000
// 定义降噪自编码器的结构体
typedef struct {
double input[INPUT_SIZE];
double hidden[HIDDEN_SIZE];
double output[OUTPUT_SIZE];
double weights_ih[INPUT_SIZE][HIDDEN_SIZE];
double weights_ho[HIDDEN_SIZE][OUTPUT_SIZE];
} Autoencoder;
// 初始化降噪自编码器的权重
void initialize_weights(Autoencoder *ae) {
for (int i = 0; i < INPUT_SIZE; i++) {
for (int j = 0; j < HIDDEN_SIZE; j++) {
ae->weights_ih[i][j] = ((double)rand() / RAND_MAX) * 2 - 1;
}
}
for (int i = 0; i < HIDDEN_SIZE; i++) {
for (int j = 0; j < OUTPUT_SIZE; j++) {
ae->weights_ho[i][j] = ((double)rand() / RAND_MAX) * 2 - 1;
}
}
}
// 前向传播
void forward(Autoencoder *ae) {
// 计算隐藏层输出
for (int i = 0; i < HIDDEN_SIZE; i++) {
double sum = 0.0;
for (int j = 0; j < INPUT_SIZE; j++) {
sum += ae->input[j] * ae->weights_ih[j][i];
}
ae->hidden[i] = 1.0 / (1.0 + exp(-sum));
}
// 计算输出层输出
for (int i = 0; i < OUTPUT_SIZE; i++) {
double sum = 0.0;
for (int j = 0; j < HIDDEN_SIZE; j++) {
sum += ae->hidden[j] * ae->weights_ho[j][i];
}
ae->output[i] = 1.0 / (1.0 + exp(-sum));
}
}
// 反向传播
void backward(Autoencoder *ae) {
// 计算输出层误差
double output_errors[OUTPUT_SIZE];
for (int i = 0; i < OUTPUT_SIZE; i++) {
output_errors[i] = ae->input[i] - ae->output[i];
}
// 更新隐藏层到输出层的权重
for (int i = 0; i < HIDDEN_SIZE; i++) {
for (int j = 0; j < OUTPUT_SIZE; j++) {
ae->weights_ho[i][j] += LEARNING_RATE * ae->hidden[i] * output_errors[j] * ae->output[j] * (1.0 - ae->output[j]);
}
}
// 更新输入层到隐藏层的权重
for (int i = 0; i < INPUT_SIZE; i++) {
for (int j = 0; j < HIDDEN_SIZE; j++) {
double sum = 0.0;
for (int k = 0; k < OUTPUT_SIZE; k++) {
sum += output_errors[k] * ae->weights_ho[j][k];
}
ae->weights_ih[i][j] += LEARNING_RATE * ae->input[i] * ae->hidden[j] * (1.0 - ae->hidden[j]) * sum;
}
}
}
// 训练降噪自编码器
void train(Autoencoder *ae, double input_data[][INPUT_SIZE], int num_samples) {
for (int epoch = 0; epoch < EPOCHS; epoch++) {
for (int sample = 0; sample < num_samples; sample++) {
// 添加噪声到输入数据
for (int i = 0; i < INPUT_SIZE; i++) {
ae->input[i] = input_data[sample][i] + ((double)rand() / RAND_MAX) * 0.1 - 0.05;
}
// 执行前向传播和反向传播
forward(ae);
backward(ae);
}
}
}
int main() {
Autoencoder ae;
initialize_weights(&ae);
// 假设有一些输入数据用于训练
double input_data[][INPUT_SIZE] = {
{0, 1, 1, 0, 0, 0, 0, 1, 1, 0},
{1, 1, 1, 1, 0, 0, 0, 1, 1, 1},
{0, 0, 0, 1, 1, 1, 1, 0, 0, 0}
};
int num_samples = sizeof(input_data) / sizeof(input_data[0]);
// 训练降噪自编码器
train(&ae, input_data, num_samples);
// 测试降噪自编码器
double test_input[INPUT_SIZE] = {0, 1, 1, 0, 0, 0, 0, 1, 1, 0};
for (int i = 0; i < INPUT_SIZE; i++) {
ae.input[i] = test_input[i];
}
forward(&ae);
// 打印输出结果
printf("Input: ");
for (int i = 0; i < INPUT_SIZE; i++) {
printf("%.2f ", ae.input[i]);
}
printf("\nOutput: ");
for (int i = 0; i < OUTPUT_SIZE; i++) {
printf("%.2f ", ae.output[i]);
}
printf("\n");
return 0;
}
```
这是一个简单的降噪自编码器的C语言实现示例,其中包括了初始化权重、前向传播、反向传播和训练过程。你可以根据自己的需求进行修改和扩展。希望对你有所帮助!
阅读全文