给出不使用sklearn库实现svm实现手写数字识别的python代码
时间: 2024-01-22 19:20:26 浏览: 113
以下是一个简单的使用Python实现SVM手写数字识别的示例代码,不使用sklearn库:
```
import numpy as np
class SVM:
def __init__(self, learning_rate=0.001, lambda_param=0.01, n_iters=1000):
self.lr = learning_rate
self.lambda_param = lambda_param
self.n_iters = n_iters
self.w = None
self.b = None
def fit(self, X, y):
n_samples, n_features = X.shape
y_ = np.where(y <= 0, -1, 1)
self.w = np.zeros(n_features)
self.b = 0
for _ in range(self.n_iters):
for idx, x_i in enumerate(X):
condition = y_[idx] * (np.dot(x_i, self.w) - self.b) >= 1
if condition:
self.w -= self.lr * (2 * self.lambda_param * self.w)
else:
self.w -= self.lr * (2 * self.lambda_param * self.w - np.dot(x_i, y_[idx]))
self.b -= self.lr * y_[idx]
def predict(self, X):
approx = np.dot(X, self.w) - self.b
return np.sign(approx)
def main():
digits = datasets.load_digits()
X, y = digits.data, digits.target
svm = SVM()
svm.fit(X, y)
print(svm.predict(X))
if __name__ == '__main__':
main()
```
这个示例需要手动从`sklearn.datasets`中导入`load_digits`来获取手写数字数据集。注意,这个示例不是最优的实现方式,它只是为了展示如何使用SVM实现手写数字识别。
阅读全文