列出pytorch常用的函数及使用方法,附带使用样例
时间: 2024-10-09 14:05:34 浏览: 30
* PyTorch
* 引入库
* ```python
import torch
```
* 基本操作
* 1. 创建张量(Tensor)
* ```python
x = torch.tensor([1, 2, 3])
```
* 2. 动态计算图
* ```python
y = torch.ones_like(x) + 2
```
* 数据加载
* ```python
train_loader = torch.utils.data.DataLoader(dataset, batch_size=64)
```
* 操作张量
* 1. 计算
* ```python
z = x + y
```
* 2. 前向传播
* ```python
output = model(input)
```
* 模型定义与训练
* ```python
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(num_epochs):
optimizer.zero_grad()
loss = loss_fn(output, labels)
loss.backward()
optimizer.step()
```
* 梯度检查
* ```python
torch.autograd.gradcheck(model, inputs)
```
* 函数库
* 1. 激活函数
* ```python
activation = torch.relu(z)
```
* 2. 卷积
* ```python
conv_out = F.conv2d(input, weight, bias=None)
```
* 3. 全连接层
* ```python
linear_out = F.linear(inputs, weights, biases)
```
注意:实际应用时,需根据具体模型需求选择合适的函数。以上只是部分常用功能示例。
阅读全文