class Recovery(Model): def __init__(self, hidden_dim, n_seq): self.hidden_dim=hidden_dim self.n_seq=n_seq return def build(self, input_shape): recovery = Sequential(name='Recovery') recovery = net(recovery, n_layers=3, hidden_units=self.hidden_dim, output_units=self.n_seq) return recovery
时间: 2024-02-14 22:26:51 浏览: 88
这段代码定义了一个名为Recovery的类,继承自Keras的Model类。Recovery类用于构建一个恢复模型,该模型包含多层GRU或LSTM。
Recovery类具有以下方法和属性:
- __init__方法:初始化方法,接受hidden_dim和n_seq两个参数。hidden_dim指定隐藏单元的数量,n_seq指定输出序列的长度。
- build方法:构建方法,接受input_shape作为参数。在该方法中,创建一个名为recovery的Sequential模型对象,并通过调用net函数构建多层GRU或LSTM模型。n_layers参数设置为3,hidden_units设置为self.hidden_dim,output_units设置为self.n_seq。最后返回构建好的模型对象。
通过创建Recovery类的实例,你可以使用build方法来构建一个恢复模型,该模型包含多层GRU或LSTM,并且隐藏单元的数量由hidden_dim指定,输出序列的长度由n_seq指定。你可以根据需要进行调整。
相关问题
def define_gan(self): self.generator_aux=Generator(self.hidden_dim).build(input_shape=(self.seq_len, self.n_seq)) self.supervisor=Supervisor(self.hidden_dim).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.discriminator=Discriminator(self.hidden_dim).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.recovery = Recovery(self.hidden_dim, self.n_seq).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.embedder = Embedder(self.hidden_dim).build(input_shape=(self.seq_len, self.n_seq)) X = Input(shape=[self.seq_len, self.n_seq], batch_size=self.batch_size, name='RealData') Z = Input(shape=[self.seq_len, self.n_seq], batch_size=self.batch_size, name='RandomNoise')
这段代码定义了一个名为define_gan的方法,用于在GAN模型中定义生成器(generator)、监督模型(supervisor)、判别器(discriminator)、恢复模型(recovery)和嵌入器(embedder)。
在该方法中,使用各个类的build方法构建了相应的模型,并将其存储在相应的实例变量中:
- self.generator_aux:通过调用Generator类的build方法构建生成器模型。input_shape参数设置为(self.seq_len, self.n_seq)。
- self.supervisor:通过调用Supervisor类的build方法构建监督模型。input_shape参数设置为(self.hidden_dim, self.hidden_dim)。
- self.discriminator:通过调用Discriminator类的build方法构建判别器模型。input_shape参数设置为(self.hidden_dim, self.hidden_dim)。
- self.recovery:通过调用Recovery类的build方法构建恢复模型。input_shape参数设置为(self.hidden_dim, self.hidden_dim)。
- self.embedder:通过调用Embedder类的build方法构建嵌入器模型。input_shape参数设置为(self.seq_len, self.n_seq)。
接下来,定义了两个输入层对象X和Z。它们分别表示真实数据输入和随机噪声输入。X和Z的形状分别为[self.seq_len, self.n_seq],batch_size设置为self.batch_size。
这段代码的目的是在GAN模型中定义各个组件,并创建输入层对象以供后续使用。
class TimeGAN(TimeGAN): def __init__(self, model_parameters, hidden_dim, seq_len, n_seq, gamma): super().__init__(model_parameters, hidden_dim, seq_len, n_seq, gamma)
这段代码是一个类的定义,继承自TimeGAN类,并重写了其构造函数。
在构造函数中,首先调用了父类 TimeGAN 的构造函数,通过 super() 函数来实现。然后,传入了一些新的参数:model_parameters、hidden_dim、seq_len、n_seq和gamma。
这个子类的构造函数的目的是初始化 TimeGAN 类的实例,并传递一些额外的参数。通过调用父类的构造函数,可以确保子类继承了父类的属性和方法,并根据需要进行扩展和修改。
阅读全文