resnet中间层添加空间注意力的代码
时间: 2024-02-24 07:51:17 浏览: 352
在ResNet中添加空间注意力的代码可以使用CBAM(Convolutional Block Attention Module)来实现。CBAM是一种结合了空间和通道注意力的混合域注意力机制,可以有效提升网络性能。
以下是在ResNet中添加CBAM模块的代码示例:
```python
import torch
import torch.nn as nn
class CBAM(nn.Module):
def __init__(self, channels, reduction=16):
super(CBAM, self).__init__()
self.spatial_attention = SpatialAttention()
self.channel_attention = ChannelAttention(channels, reduction)
def forward(self, x):
x = self.spatial_attention(x)
x = self.channel_attention(x)
return x
class SpatialAttention(nn.Module):
def __init__(self):
super(SpatialAttention, self).__init__()
self.conv = nn.Conv2d(2, 1, kernel_size=7, stride=1, padding=3)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_pool = torch.mean(x, dim=1, keepdim=True)
max_pool = torch.max(x, dim=1, keepdim=True)[0]
pool = torch.cat([avg_pool, max_pool], dim=1)
attention = self.conv(pool)
attention = self.sigmoid(attention)
x = x * attention
return x
class ChannelAttention(nn.Module):
def __init__(self, channels, reduction=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channels, channels // reduction),
nn.ReLU(inplace=True),
nn.Linear(channels // reduction, channels)
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_pool = self.avg_pool(x).squeeze()
max_pool = self.max_pool(x).squeeze()
avg_attention = self.fc(avg_pool)
max_attention = self.fc(max_pool)
attention = self.sigmoid(avg_attention + max_attention).unsqueeze(2).unsqueeze(3)
x = x * attention
return x
# 在ResNet中添加CBAM模块
class ResNetCBAM(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNetCBAM, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
self.cbam = CBAM(512 * block.expansion)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
x = self.cbam(x)
return x
# 使用ResNetCBAM模型
model = ResNetCBAM(Bottleneck, [3, 4, 6, 3])
```
这段代码定义了一个CBAM模块,其中包括空间注意力和通道注意力两部分。然后,在ResNet的每个残差块中添加了CBAM模块。最后,定义了一个使用ResNetCBAM模型的示例。
阅读全文