yolov8 bot_sort代码
时间: 2023-10-02 18:13:21 浏览: 170
yolov8 tracking支持deepocsort、strongsort、bytetrack、botsort等各类跟踪器
5星 · 资源好评率100%
以下是一个使用YOLOv4和SORT(Simple Online and Realtime Tracking)算法进行目标检测和跟踪的示例代码,您可以参考:
```python
import cv2
import numpy as np
from sort import *
# 加载YOLOv4模型
net = cv2.dnn.readNet("yolov4.weights", "yolov4.cfg")
# 获取模型输出层的名称
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# 加载类别标签
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# 初始化跟踪器
tracker = Sort()
# 打开视频文件
video = cv2.VideoCapture("test.mp4")
while True:
ret, frame = video.read()
if not ret:
break
height, width, channels = frame.shape
# 图像预处理
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
# 将图像输入到网络中进行目标检测
net.setInput(blob)
outs = net.forward(output_layers)
class_ids = []
confidences = []
boxes = []
# 解析模型输出
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# 应用非极大值抑制获取最终的检测结果
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# 更新跟踪器
detections = []
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
detections.append([x, y, x+w, y+h])
trackers = tracker.update(np.array(detections))
for d in trackers:
x1, y1, x2, y2, track_id = d.astype(np.int32)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, str(track_id), (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
cv2.imshow("Tracking", frame)
if cv2.waitKey(1) == ord('q'):
break
video.release()
cv2.destroyAllWindows()
```
请注意,这只是一个示例代码,您需要根据您的实际环境和需求进行适当的修改和调整。此外,您需要确保已经下载了YOLOv4的权重文件(yolov4.weights)、配置文件(yolov4.cfg)和类别标签文件(coco.names)。
阅读全文