请用pytorch搭建transformer时间序列预测网络
时间: 2023-10-02 13:13:56 浏览: 113
好的,以下是使用 PyTorch 搭建 Transformer 时间序列预测网络的代码。
首先,需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
```
然后,我们定义一个 Transformer 模型类,其中包括了编码器、解码器和最终的输出层。
```python
class TransformerTimeSeries(nn.Module):
def __init__(self, input_size, output_size, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout):
super(TransformerTimeSeries, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.d_model = d_model
self.nhead = nhead
self.num_encoder_layers = num_encoder_layers
self.num_decoder_layers = num_decoder_layers
self.dim_feedforward = dim_feedforward
self.dropout = dropout
self.encoder = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout),
num_layers=num_encoder_layers
)
self.decoder = nn.TransformerDecoder(
nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout),
num_layers=num_decoder_layers
)
self.linear = nn.Linear(d_model, output_size)
def forward(self, src, tgt):
src_mask = self.generate_square_subsequent_mask(src.size(0)).to(src.device)
tgt_mask = self.generate_square_subsequent_mask(tgt.size(0)).to(tgt.device)
memory = self.encoder(src, src_mask)
output = self.decoder(tgt, memory, tgt_mask=tgt_mask)
output = self.linear(output)
return output
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
```
在这个模型中,我们使用了 PyTorch 自带的 Transformer 编码器和解码器,并且定义了一个线性层作为最终的输出层。在 `forward` 函数中,我们通过编码器得到了输入序列的表示 `memory`,然后将其传递给解码器,解码器再根据目标序列生成预测结果。
接下来,我们定义一个函数来训练这个模型。
```python
def train(model, optimizer, criterion, train_loader, num_epochs):
for epoch in range(num_epochs):
train_loss = 0.0
for i, (inputs, targets) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs, targets[:-1])
loss = criterion(outputs.reshape(-1, outputs.size(-1)), targets[1:].reshape(-1))
loss.backward()
optimizer.step()
train_loss += loss.item()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, train_loss/len(train_loader)))
```
在这个函数中,我们使用交叉熵损失函数,并且在训练过程中使用了梯度下降优化器。每个 epoch 中,我们遍历训练数据集,计算损失并更新模型参数,最后输出平均损失。
最后,我们可以使用定义好的模型和训练函数来训练我们的时间序列预测网络了。
```python
# 定义超参数
input_size = 1
output_size = 1
d_model = 16
nhead = 4
num_encoder_layers = 2
num_decoder_layers = 2
dim_feedforward = 64
dropout = 0.1
num_epochs = 100
learning_rate = 0.001
# 准备数据
train_data = np.sin(np.linspace(0, 100, 1000))
train_data = torch.from_numpy(train_data).float().unsqueeze(-1)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=32)
# 定义模型和优化器
model = TransformerTimeSeries(input_size, output_size, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
train(model, optimizer, criterion, train_loader, num_epochs)
```
在这个例子中,我们使用了一个简单的正弦函数来作为训练数据集。你可以根据你的需求替换成其他的时间序列数据集。
阅读全文