U-Net与Encoder-Decoder的区别
时间: 2024-01-17 13:03:05 浏览: 448
U-Net和Encoder-Decoder都是用于图像分割任务的神经网络结构,但是它们的设计思路不同。Encoder-Decoder结构将输入图像编码成一个低维的特征向量,然后再将这个特征向量解码成输出图像。而U-Net则采用了一种类似于上采样的方式,将特征向量通过反卷积操作逐渐还原成与输入图像同样大小的输出图像。
相关问题
faster RCNN 与U-net的区别与联系
Faster RCNN 和 U-Net 是两种深度学习模型,分别应用于目标检测和语义分割任务。区别在于,Faster RCNN 是一种基于区域提取的目标检测模型,通过将特征图和候选框进行卷积运算从而得到检测结果;而 U-Net 是一种基于 encoder-decoder 结构的语义分割模型,通过将高分辨率特征图和低分辨率特征图进行级联从而实现像素级别的语义分割。联系在于,这两种模型都是在计算机视觉领域广泛应用的深度学习模型,都利用了卷积神经网络中的一些核心思想和技术。
Deep Residual U-Net
Deep Residual U-Net是一种基于U-Net和ResNet的图像分割网络。它采用了U-Net的编码器-解码器结构,同时在每个解码器块中使用了ResNet的残差块(DR块)来提高特征提取能力。DR块通过引入SE(Squeeze-and-Excitation)机制来增强编码器的全局特征提取能力,同时使用1×1卷积来改变特征图的维度,以确保3×3卷积滤波器不受前一层的影响。此外,为了避免网络太深的影响,在两组Conv 1×1-Conv 3×3操作之间引入了一条捷径,允许网络跳过可能导致性能下降的层,并将原始特征转移到更深的层。Deep Residual U-Net在多个图像分割任务中都取得了优秀的性能。
以下是Deep Residual U-Net的编码器-解码器结构示意图:
```python
import torch.nn as nn
class DRBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(DRBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(out_channels, out_channels, kernel_size=1)
self.relu = nn.ReLU(inplace=True)
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(out_channels, out_channels // 16, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels // 16, out_channels, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.relu(out)
out = self.conv2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.se(out) * out
out += identity
out = self.relu(out)
return out
class DRUNet(nn.Module):
def __init__(self, in_channels, out_channels, init_features=32):
super(DRUNet, self).__init__()
features = init_features
self.encoder1 = nn.Sequential(
nn.Conv2d(in_channels, features, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(features, features, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder2 = nn.Sequential(
DRBlock(features, features * 2),
nn.Conv2d(features * 2, features * 2, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
DRBlock(features * 2, features * 2),
nn.Conv2d(features * 2, features * 2, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder3 = nn.Sequential(
DRBlock(features * 2, features * 4),
nn.Conv2d(features * 4, features * 4, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
DRBlock(features * 4, features * 4),
nn.Conv2d(features * 4, features * 4, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder4 = nn.Sequential(
DRBlock(features * 4, features * 8),
nn.Conv2d(features * 8, features * 8, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
DRBlock(features * 8, features * 8),
nn.Conv2d(features * 8, features * 8, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.bottleneck = nn.Sequential(
DRBlock(features * 8, features * 16),
nn.Conv2d(features * 16, features * 16, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
DRBlock(features * 16, features * 16),
nn.Conv2d(features * 16, features * 16, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.upconv4 = nn.ConvTranspose2d(features * 16, features * 8, kernel_size=2, stride=2)
self.decoder4 = nn.Sequential(
DRBlock(features * 16, features * 8),
nn.Conv2d(features * 8, features * 8, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
DRBlock(features * 8, features * 8),
nn.Conv2d(features * 8, features * 8, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.upconv3 = nn.ConvTranspose2d(features * 8, features * 4, kernel_size=2, stride=2)
self.decoder3 = nn.Sequential(
DRBlock(features * 8, features * 4),
nn.Conv2d(features * 4, features * 4, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
DRBlock(features * 4, features * 4),
nn.Conv2d(features * 4, features * 4, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.upconv2 = nn.ConvTranspose2d(features * 4, features * 2, kernel_size=2, stride=2)
self.decoder2 = nn.Sequential(
DRBlock(features * 4, features * 2),
nn.Conv2d(features * 2, features * 2, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
DRBlock(features * 2, features * 2),
nn.Conv2d(features * 2, features * 2, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.upconv1 = nn.ConvTranspose2d(features * 2, features, kernel_size=2, stride=2)
self.decoder1 = nn.Sequential(
DRBlock(features * 2, features),
nn.Conv2d(features, features, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
DRBlock(features, features),
nn.Conv2d(features, features, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.conv = nn.Conv2d(features, out_channels, kernel_size=1)
def forward(self, x):
enc1 = self.encoder1(x)
enc2 = self.encoder2(self.pool1(enc1))
enc3 = self.encoder3(self.pool2(enc2))
enc4 = self.encoder4(self.pool3(enc3))
bottleneck = self.bottleneck(self.pool4(enc4))
dec4 = self.upconv4(bottleneck)
dec4 = torch.cat((enc4, dec4), dim=1)
dec4 = self.decoder4(dec4)
dec3 = self.upconv3(dec4)
dec3 = torch.cat((enc3, dec3), dim=1)
dec3 = self.decoder3(dec3)
dec2 = self.upconv2(dec3)
dec2 = torch.cat((enc2, dec2), dim=1)
dec2 = self.decoder2(dec2)
dec1 = self.upconv1(dec2)
dec1 = torch.cat((enc1, dec1), dim=1)
dec1 = self.decoder1(dec1)
return self.conv(dec1)
```
阅读全文