U-Net医学图像分割实战

时间: 2023-07-08 09:08:02 浏览: 178
U-Net是一种用于医学图像分割的深度学习模型,它在2015年由Olaf Ronneberger等人提出。U-Net的结构类似于一个U形,因此得名,它基于卷积神经网络(CNN)的思想,使用反卷积层实现了图像的上采样,在这方面比其他图像分割模型更具优势。 下面是U-Net模型的结构: ![U-Net模型](https://www.jeremyjordan.me/content/images/2018/05/u-net-architecture.png) U-Net模型分为两个部分:编码器和解码器。编码器部分由卷积层和最大池化层组成,在特征提取的同时缩小输入图像的大小。解码器部分由反卷积层和卷积层组成,将特征图像上采样到原始大小,并输出分割结果。 为了更好地理解U-Net模型,我们可以通过一个医学图像分割的实战来进一步学习。 ## 实战:使用U-Net进行肝脏图像分割 ### 数据集 我们使用了一个公共的医学图像分割数据集,名为MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge Data。该数据集包含131个肝脏CT图像,每个图像的大小为512x512,以及相应的肝脏和肝癌分割结果。 数据集可以从以下网址下载:https://competitions.codalab.org/competitions/17094 ### 环境配置 - Python 3.6 - TensorFlow 1.14 - keras 2.2.4 ### 数据预处理 在训练U-Net模型之前,我们需要对数据进行预处理。这里我们使用了一些常见的数据增强技术,包括旋转、翻转、缩放和随机裁剪等。 ```python import numpy as np import cv2 import os def data_augmentation(image, label): if np.random.random() < 0.5: # rotate image and label angle = np.random.randint(-10, 10) rows, cols = image.shape[:2] M = cv2.getRotationMatrix2D((cols/2, rows/2), angle, 1) image = cv2.warpAffine(image, M, (cols, rows)) label = cv2.warpAffine(label, M, (cols, rows)) if np.random.random() < 0.5: # flip image and label image = cv2.flip(image, 1) label = cv2.flip(label, 1) if np.random.random() < 0.5: # scale image and label scale = np.random.uniform(0.8, 1.2) rows, cols = image.shape[:2] M = cv2.getRotationMatrix2D((cols/2, rows/2), 0, scale) image = cv2.warpAffine(image, M, (cols, rows), borderMode=cv2.BORDER_REFLECT) label = cv2.warpAffine(label, M, (cols, rows), borderMode=cv2.BORDER_REFLECT) if np.random.random() < 0.5: # crop image and label rows, cols = image.shape[:2] x = np.random.randint(0, rows - 256) y = np.random.randint(0, cols - 256) image = image[x:x+256, y:y+256] label = label[x:x+256, y:y+256] return image, label def preprocess_data(image_path, label_path): image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE).astype(np.float32) label = cv2.imread(label_path, cv2.IMREAD_GRAYSCALE).astype(np.float32) # normalize image image = (image - np.mean(image)) / np.std(image) # resize image and label image = cv2.resize(image, (256, 256)) label = cv2.resize(label, (256, 256)) # perform data augmentation image, label = data_augmentation(image, label) # convert label to binary mask label[label > 0] = 1 return image, label ``` ### 构建U-Net模型 我们使用了Keras来构建U-Net模型,代码如下: ```python from keras.models import Model from keras.layers import Input, Conv2D, MaxPooling2D, Dropout, UpSampling2D, concatenate def unet(input_size=(256, 256, 1)): inputs = Input(input_size) # encoder conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs) conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1) conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2) conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3) conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) drop4 = Dropout(0.5)(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) # decoder up5 = UpSampling2D(size=(2, 2))(pool4) up5 = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(up5) merge5 = concatenate([drop4, up5], axis=3) conv5 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge5) conv5 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) up6 = UpSampling2D(size=(2, 2))(conv5) up6 = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(up6) merge6 = concatenate([conv3, up6], axis=3) conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6) conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6) up7 = UpSampling2D(size=(2, 2))(conv6) up7 = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(up7) merge7 = concatenate([conv2, up7], axis=3) conv7 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7) conv7 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7) up8 = UpSampling2D(size=(2, 2))(conv7) up8 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(up8) merge8 = concatenate([conv1, up8], axis=3) conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8) conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8) outputs = Conv2D(1, 1, activation='sigmoid')(conv8) model = Model(inputs=inputs, outputs=outputs) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model ``` ### 训练模型 我们将数据集分为训练集和测试集,然后使用Keras的fit方法来训练模型。 ```python from keras.callbacks import ModelCheckpoint # set paths train_path = '/path/to/train' test_path = '/path/to/test' # get list of images and labels train_images = sorted(os.listdir(os.path.join(train_path, 'images'))) train_labels = sorted(os.listdir(os.path.join(train_path, 'labels'))) test_images = sorted(os.listdir(os.path.join(test_path, 'images'))) test_labels = sorted(os.listdir(os.path.join(test_path, 'labels'))) # initialize model model = unet() # train model checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) model.fit_generator(generator(train_path, train_images, train_labels), steps_per_epoch=100, epochs=10, validation_data=generator(test_path, test_images, test_labels), validation_steps=50, callbacks=[checkpoint]) ``` ### 评估模型 训练完成后,我们需要对模型进行评估。这里我们使用了Dice系数和交并比(IoU)这两个常用的评估指标。 ```python def dice_coef(y_true, y_pred): smooth = 1e-5 y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) def iou(y_true, y_pred): smooth = 1e-5 y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) union = K.sum(y_true_f) + K.sum(y_pred_f) - intersection return (intersection + smooth) / (union + smooth) model = load_model('model.h5', custom_objects={'dice_coef': dice_coef, 'iou': iou}) test_images = sorted(os.listdir(os.path.join(test_path, 'images'))) test_labels = sorted(os.listdir(os.path.join(test_path, 'labels'))) dice_coefficients = [] ious = [] for i in range(len(test_images)): # preprocess image and label image_path = os.path.join(test_path, 'images', test_images[i]) label_path = os.path.join(test_path, 'labels', test_labels[i]) image, label = preprocess_data(image_path, label_path) # predict label pred = model.predict(np.expand_dims(image, axis=0))[0] # calculate dice coefficient and IoU dice_coefficient = dice_coef(np.expand_dims(label, axis=0), np.expand_dims(pred, axis=0)) iou_ = iou(np.expand_dims(label, axis=0), np.expand_dims(pred, axis=0)) dice_coefficients.append(dice_coefficient) ious.append(iou_) # calculate average dice coefficient and IoU print('Dice coefficient:', np.mean(dice_coefficients)) print('IoU:', np.mean(ious)) ``` 通过实战,我们可以更加深入地了解U-Net模型的原理和使用方法。
阅读全文

相关推荐

最新推荐

recommend-type

u-center使用说明

【u-center使用说明】 u-center是一款由瑞士u-blox公司提供的专业级测试软件,它专为u-blox公司的各类模块提供了全面的配置和测试功能。该软件不仅具备强大的测试能力,还能对u-blox模块进行各种功能设置,适用于...
recommend-type

pytorch 语义分割-医学图像-脑肿瘤数据集的载入模块

在进行深度学习的语义分割任务时,尤其是针对医学图像如脑肿瘤的分析,自定义数据加载模块至关重要。PyTorch 提供了 `torch.utils.data.Dataset` 类,用于定义自己的数据集类,以便高效地处理大量数据。在这个场景中...
recommend-type

在Pytorch中使用Mask R-CNN进行实例分割操作

实例分割是计算机视觉领域的一个关键任务,它旨在识别图像中每个像素所属的对象实例。不同于语义分割,实例分割不仅标识像素的类别,还能区分同一类的不同实例。Mask R-CNN是解决这个问题的著名框架,它在目标检测的...
recommend-type

python命令 -u参数用法解析

Python命令行中的`-u`参数是一个非常实用的选项,特别是在处理实时输出或者需要精确控制标准输出流(stdout)和标准错误流(stderr)的时候。本文将深入解析`-u`参数的用法,并通过实例代码展示其效果。 在Python...
recommend-type

基于深度学习的图像语义分割算法综述

此外,还有利用跳跃连接(jump connections)恢复高分辨率输出的模型,如U-Net,它结合了浅层和深层特征,以获取更全面的信息。 在深度学习模型中,VGG和GoogLeNet是常用的网络架构。VGG-16以其深层数量和小卷积核的...
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。