U-Net医学图像分割实战

时间: 2023-07-08 17:08:02 浏览: 116
U-Net是一种用于医学图像分割的深度学习模型,它在2015年由Olaf Ronneberger等人提出。U-Net的结构类似于一个U形,因此得名,它基于卷积神经网络(CNN)的思想,使用反卷积层实现了图像的上采样,在这方面比其他图像分割模型更具优势。 下面是U-Net模型的结构: ![U-Net模型](https://www.jeremyjordan.me/content/images/2018/05/u-net-architecture.png) U-Net模型分为两个部分:编码器和解码器。编码器部分由卷积层和最大池化层组成,在特征提取的同时缩小输入图像的大小。解码器部分由反卷积层和卷积层组成,将特征图像上采样到原始大小,并输出分割结果。 为了更好地理解U-Net模型,我们可以通过一个医学图像分割的实战来进一步学习。 ## 实战:使用U-Net进行肝脏图像分割 ### 数据集 我们使用了一个公共的医学图像分割数据集,名为MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge Data。该数据集包含131个肝脏CT图像,每个图像的大小为512x512,以及相应的肝脏和肝癌分割结果。 数据集可以从以下网址下载:https://competitions.codalab.org/competitions/17094 ### 环境配置 - Python 3.6 - TensorFlow 1.14 - keras 2.2.4 ### 数据预处理 在训练U-Net模型之前,我们需要对数据进行预处理。这里我们使用了一些常见的数据增强技术,包括旋转、翻转、缩放和随机裁剪等。 ```python import numpy as np import cv2 import os def data_augmentation(image, label): if np.random.random() < 0.5: # rotate image and label angle = np.random.randint(-10, 10) rows, cols = image.shape[:2] M = cv2.getRotationMatrix2D((cols/2, rows/2), angle, 1) image = cv2.warpAffine(image, M, (cols, rows)) label = cv2.warpAffine(label, M, (cols, rows)) if np.random.random() < 0.5: # flip image and label image = cv2.flip(image, 1) label = cv2.flip(label, 1) if np.random.random() < 0.5: # scale image and label scale = np.random.uniform(0.8, 1.2) rows, cols = image.shape[:2] M = cv2.getRotationMatrix2D((cols/2, rows/2), 0, scale) image = cv2.warpAffine(image, M, (cols, rows), borderMode=cv2.BORDER_REFLECT) label = cv2.warpAffine(label, M, (cols, rows), borderMode=cv2.BORDER_REFLECT) if np.random.random() < 0.5: # crop image and label rows, cols = image.shape[:2] x = np.random.randint(0, rows - 256) y = np.random.randint(0, cols - 256) image = image[x:x+256, y:y+256] label = label[x:x+256, y:y+256] return image, label def preprocess_data(image_path, label_path): image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE).astype(np.float32) label = cv2.imread(label_path, cv2.IMREAD_GRAYSCALE).astype(np.float32) # normalize image image = (image - np.mean(image)) / np.std(image) # resize image and label image = cv2.resize(image, (256, 256)) label = cv2.resize(label, (256, 256)) # perform data augmentation image, label = data_augmentation(image, label) # convert label to binary mask label[label > 0] = 1 return image, label ``` ### 构建U-Net模型 我们使用了Keras来构建U-Net模型,代码如下: ```python from keras.models import Model from keras.layers import Input, Conv2D, MaxPooling2D, Dropout, UpSampling2D, concatenate def unet(input_size=(256, 256, 1)): inputs = Input(input_size) # encoder conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs) conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1) conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2) conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3) conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) drop4 = Dropout(0.5)(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) # decoder up5 = UpSampling2D(size=(2, 2))(pool4) up5 = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(up5) merge5 = concatenate([drop4, up5], axis=3) conv5 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge5) conv5 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) up6 = UpSampling2D(size=(2, 2))(conv5) up6 = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(up6) merge6 = concatenate([conv3, up6], axis=3) conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6) conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6) up7 = UpSampling2D(size=(2, 2))(conv6) up7 = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(up7) merge7 = concatenate([conv2, up7], axis=3) conv7 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7) conv7 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7) up8 = UpSampling2D(size=(2, 2))(conv7) up8 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(up8) merge8 = concatenate([conv1, up8], axis=3) conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8) conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8) outputs = Conv2D(1, 1, activation='sigmoid')(conv8) model = Model(inputs=inputs, outputs=outputs) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model ``` ### 训练模型 我们将数据集分为训练集和测试集,然后使用Keras的fit方法来训练模型。 ```python from keras.callbacks import ModelCheckpoint # set paths train_path = '/path/to/train' test_path = '/path/to/test' # get list of images and labels train_images = sorted(os.listdir(os.path.join(train_path, 'images'))) train_labels = sorted(os.listdir(os.path.join(train_path, 'labels'))) test_images = sorted(os.listdir(os.path.join(test_path, 'images'))) test_labels = sorted(os.listdir(os.path.join(test_path, 'labels'))) # initialize model model = unet() # train model checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) model.fit_generator(generator(train_path, train_images, train_labels), steps_per_epoch=100, epochs=10, validation_data=generator(test_path, test_images, test_labels), validation_steps=50, callbacks=[checkpoint]) ``` ### 评估模型 训练完成后,我们需要对模型进行评估。这里我们使用了Dice系数和交并比(IoU)这两个常用的评估指标。 ```python def dice_coef(y_true, y_pred): smooth = 1e-5 y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) def iou(y_true, y_pred): smooth = 1e-5 y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) union = K.sum(y_true_f) + K.sum(y_pred_f) - intersection return (intersection + smooth) / (union + smooth) model = load_model('model.h5', custom_objects={'dice_coef': dice_coef, 'iou': iou}) test_images = sorted(os.listdir(os.path.join(test_path, 'images'))) test_labels = sorted(os.listdir(os.path.join(test_path, 'labels'))) dice_coefficients = [] ious = [] for i in range(len(test_images)): # preprocess image and label image_path = os.path.join(test_path, 'images', test_images[i]) label_path = os.path.join(test_path, 'labels', test_labels[i]) image, label = preprocess_data(image_path, label_path) # predict label pred = model.predict(np.expand_dims(image, axis=0))[0] # calculate dice coefficient and IoU dice_coefficient = dice_coef(np.expand_dims(label, axis=0), np.expand_dims(pred, axis=0)) iou_ = iou(np.expand_dims(label, axis=0), np.expand_dims(pred, axis=0)) dice_coefficients.append(dice_coefficient) ious.append(iou_) # calculate average dice coefficient and IoU print('Dice coefficient:', np.mean(dice_coefficients)) print('IoU:', np.mean(ious)) ``` 通过实战,我们可以更加深入地了解U-Net模型的原理和使用方法。

相关推荐

最新推荐

recommend-type

python基于K-means聚类算法的图像分割

在本文中,我们将深入探讨如何使用Python中的K-means聚类算法进行图像分割。K-means是一种经典的无监督机器学习算法,它通过迭代过程将数据点分配到最近的聚类中心,最终达到聚类的目的。在图像处理领域,图像可以被...
recommend-type

u-center使用说明

瑞士u-blox公司提供的专业测试软件u-center,不但是专业级别的测试软件,而且可以对u-blox公司的模块进行相应的模块功能设置,功能强大,我们将为你介绍部分常用的相关与模块接口的使用功能. 以下介绍的是通过u-blox...
recommend-type

在Pytorch中使用Mask R-CNN进行实例分割操作

实例分割是计算机视觉领域的一个关键任务,它旨在识别图像中每个像素所属的对象实例。不同于语义分割,实例分割不仅标识像素的类别,还能区分同一类的不同实例。Mask R-CNN是解决这个问题的著名框架,它在目标检测的...
recommend-type

pytorch 语义分割-医学图像-脑肿瘤数据集的载入模块

由于最近目标是完成基于深度学习的脑肿瘤语义分割实验,所以需要用到自定义的数据载入,本文参考了一下博客:https://blog.csdn.net/tuiqdymy/article/details/84779716?utm_source=app,一开始是做的眼底图像分割,...
recommend-type

python命令 -u参数用法解析

Python命令行中的`-u`参数是一个非常实用的选项,特别是在处理实时输出或者需要精确控制标准输出流(stdout)和标准错误流(stderr)的时候。本文将深入解析`-u`参数的用法,并通过实例代码展示其效果。 在Python...
recommend-type

新皇冠假日酒店互动系统的的软件测试论文.docx

该文档是一篇关于新皇冠假日酒店互动系统的软件测试的学术论文。作者深入探讨了在开发和实施一个交互系统的过程中,如何确保其质量与稳定性。论文首先从软件测试的基础理论出发,介绍了技术背景,特别是对软件测试的基本概念和常用方法进行了详细的阐述。 1. 软件测试基础知识: - 技术分析部分,着重讲解了软件测试的全面理解,包括软件测试的定义,即检查软件产品以发现错误和缺陷的过程,确保其功能、性能和安全性符合预期。此外,还提到了几种常见的软件测试方法,如黑盒测试(关注用户接口)、白盒测试(基于代码内部结构)、灰盒测试(结合了两者)等,这些都是测试策略选择的重要依据。 2. 测试需求及测试计划: - 在这个阶段,作者详细分析了新皇冠假日酒店互动系统的需求,包括功能需求、性能需求、安全需求等,这是测试设计的基石。根据这些需求,作者制定了一份详尽的测试计划,明确了测试的目标、范围、时间表和预期结果。 3. 测试实践: - 采用的手动测试方法表明,作者重视对系统功能的直接操作验证,这可能涉及到用户界面的易用性、响应时间、数据一致性等多个方面。使用的工具和技术包括Sunniwell-android配置工具,用于Android应用的配置管理;MySQL,作为数据库管理系统,用于存储和处理交互系统的数据;JDK(Java Development Kit),是开发Java应用程序的基础;Tomcat服务器,一个轻量级的Web应用服务器,对于处理Web交互至关重要;TestDirector,这是一个功能强大的测试管理工具,帮助管理和监控整个测试过程,确保测试流程的规范性和效率。 4. 关键词: 论文的关键词“酒店互动系统”突出了研究的应用场景,而“Tomcat”和“TestDirector”则代表了论文的核心技术手段和测试工具,反映了作者对现代酒店业信息化和自动化测试趋势的理解和应用。 5. 目录: 前言部分可能概述了研究的目的、意义和论文结构,接下来的内容可能会依次深入到软件测试的理论、需求分析、测试策略和方法、测试结果与分析、以及结论和未来工作方向等章节。 这篇论文详细探讨了新皇冠假日酒店互动系统的软件测试过程,从理论到实践,展示了如何通过科学的测试方法和工具确保系统的质量,为酒店行业的软件开发和维护提供了有价值的参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python Shell命令执行:管道与重定向,实现数据流控制,提升脚本灵活性

![Python Shell命令执行:管道与重定向,实现数据流控制,提升脚本灵活性](https://static.vue-js.com/1a57caf0-0634-11ec-8e64-91fdec0f05a1.png) # 1. Python Shell命令执行基础** Python Shell 提供了一种交互式环境,允许用户直接在命令行中执行 Python 代码。它提供了一系列命令,用于执行各种任务,包括: * **交互式代码执行:**在 Shell 中输入 Python 代码并立即获得结果。 * **脚本执行:**使用 `python` 命令执行外部 Python 脚本。 * **模
recommend-type

jlink解锁S32K

J-Link是一款通用的仿真器,可用于解锁NXP S32K系列微控制器。J-Link支持各种调试接口,包括JTAG、SWD和cJTAG。以下是使用J-Link解锁S32K的步骤: 1. 准备好J-Link仿真器和S32K微控制器。 2. 将J-Link仿真器与计算机连接,并将其与S32K微控制器连接。 3. 打开S32K的调试工具,如S32 Design Studio或者IAR Embedded Workbench。 4. 在调试工具中配置J-Link仿真器,并连接到S32K微控制器。 5. 如果需要解锁S32K的保护,需要在调试工具中设置访问级别为unrestricted。 6. 点击下载
recommend-type

上海空中营业厅系统的软件测试论文.doc

"上海空中营业厅系统的软件测试论文主要探讨了对上海空中营业厅系统进行全面功能测试的过程和技术。本文深入分析了该系统的核心功能,包括系统用户管理、代理商管理、资源管理、日志管理和OTA(Over-The-Air)管理系统。通过制定测试需求、设计测试用例和构建测试环境,论文详述了测试执行的步骤,并记录了测试结果。测试方法以手工测试为主,辅以CPTT工具实现部分自动化测试,同时运用ClearQuest软件进行测试缺陷的全程管理。测试策略采用了黑盒测试方法,重点关注系统的外部行为和功能表现。 在功能测试阶段,首先对每个功能模块进行了详尽的需求分析,明确了测试目标。系统用户管理涉及用户注册、登录、权限分配等方面,测试目的是确保用户操作的安全性和便捷性。代理商管理则关注代理的增删改查、权限设置及业务处理流程。资源管理部分测试了资源的上传、下载、更新等操作,确保资源的有效性和一致性。日志管理侧重于记录系统活动,便于故障排查和审计。OTA管理系统则关注软件的远程升级和更新,确保更新过程的稳定性和兼容性。 测试用例的设计覆盖了所有功能模块,旨在发现潜在的软件缺陷。每个用例都包含了预期输入、预期输出和执行步骤,以保证测试的全面性。测试环境的搭建模拟了实际运行环境,包括硬件配置、操作系统、数据库版本等,以确保测试结果的准确性。 在测试执行过程中,手动测试部分主要由测试人员根据用例进行操作,观察系统反应并记录结果。而自动化测试部分,CPTT工具的应用减轻了重复劳动,提高了测试效率。ClearQuest软件用于跟踪和管理测试过程中发现的缺陷,包括缺陷报告、分类、优先级设定、状态更新和关闭,确保了缺陷处理的流程化和规范化。 最后,测试总结分析了测试结果,评估了系统的功能完善程度和稳定性,提出了改进意见和未来测试工作的方向。通过黑盒测试方法,重点考察了用户在实际操作中可能遇到的问题,确保了上海空中营业厅系统能够提供稳定、可靠的服务。 关键词:上海空中营业厅系统;功能测试;缺陷管理;测试用例;自动化测试;黑盒测试;CPTT;ClearQuest"