使用信赖域算法的C++代码实现双目相机外参数的标定优化

时间: 2023-06-26 21:07:49 浏览: 108
双目相机的外参标定优化是一个常见的问题,信赖域算法可以作为一种有效的优化方法,以下是使用C++实现双目相机外参标定优化的代码: ```cpp #include <iostream> #include <vector> #include <opencv2/opencv.hpp> #include <Eigen/Core> #include <Eigen/Dense> #include <Eigen/Geometry> #include <unsupported/Eigen/NonLinearOptimization> using namespace std; using namespace cv; using namespace Eigen; // 定义优化问题的结构体 struct MyCostFunction : public Eigen::DenseFunctor<double> { MyCostFunction(vector<Point2f>& img_points_l, vector<Point2f>& img_points_r, Mat& K_l, Mat& K_r, Mat& distCoeffs_l, Mat& distCoeffs_r, Matrix4d& T_lr) : m_img_points_l(img_points_l), m_img_points_r(img_points_r), m_K_l(K_l), m_K_r(K_r), m_distCoeffs_l(distCoeffs_l), m_distCoeffs_r(distCoeffs_r), m_T_lr(T_lr) {} int operator()(const Eigen::VectorXd& x, Eigen::VectorXd& fvec) const override { // 外参矩阵 Matrix4d T_rl = Matrix4d::Identity(); Quaterniond q(x[0], x[1], x[2], x[3]); Vector3d t(x[4], x[5], x[6]); T_rl.block<3, 3>(0, 0) = q.toRotationMatrix(); T_rl.block<3, 1>(0, 3) = t; // 投影矩阵 Matrix<double, 3, 4> P_l = m_K_l * Matrix<double, 3, 4>::Identity(); Matrix<double, 3, 4> P_r = m_K_r * T_rl.inverse().block<3, 4>(0, 0); // 计算重投影误差 for (int i = 0; i < m_img_points_l.size(); ++i) { Vector4d pt_l(m_img_points_l[i].x, m_img_points_l[i].y, 1, 1); Vector4d pt_r(m_img_points_r[i].x, m_img_points_r[i].y, 1, 1); pt_l = m_distCoeffs_l * pt_l; pt_r = m_distCoeffs_r * pt_r; pt_l /= pt_l(2); pt_r /= pt_r(2); Vector3d pt_3d(x[7], x[8], x[9]); Vector3d pt_l_proj = P_l * pt_3d.homogeneous(); Vector3d pt_r_proj = P_r * pt_3d.homogeneous(); pt_l_proj /= pt_l_proj(2); pt_r_proj /= pt_r_proj(2); Vector3d diff = pt_l_proj.head<2>() - pt_l.head<2>(); fvec(i * 2) = diff.norm(); diff = pt_r_proj.head<2>() - pt_r.head<2>(); fvec(i * 2 + 1) = diff.norm(); } return 0; } int inputs() const override { return 10; } // 外参矩阵的自由度为7,空间点坐标自由度为3 int values() const override { return m_img_points_l.size() * 2; } // 每个特征点对应两个重投影误差 vector<Point2f>& m_img_points_l; // 左相机特征点 vector<Point2f>& m_img_points_r; // 右相机特征点 Mat& m_K_l; // 左相机内参矩阵 Mat& m_K_r; // 右相机内参矩阵 Mat& m_distCoeffs_l; // 左相机畸变矩阵 Mat& m_distCoeffs_r; // 右相机畸变矩阵 Matrix4d& m_T_lr; // 左右相机间的外参矩阵 }; int main() { // 读取左右相机的特征点和内外参矩阵 vector<Point2f> img_points_l, img_points_r; Mat K_l, K_r, distCoeffs_l, distCoeffs_r; Matrix4d T_lr; // 省略读取数据的代码 // 构造优化问题 MyCostFunction cost_function(img_points_l, img_points_r, K_l, K_r, distCoeffs_l, distCoeffs_r, T_lr); Eigen::NumericalDiff<MyCostFunction> num_diff(cost_function); Eigen::LevenbergMarquardt<Eigen::NumericalDiff<MyCostFunction>, double> lm(num_diff); Eigen::VectorXd x(10); // 外参矩阵和空间点坐标 x << 0, 0, 0, 1, 0, 0, 0, 0, 0, 0; // 初始值 lm.minimize(x); cout << "优化后的结果:" << endl << x.transpose() << endl; return 0; } ``` 需要注意的是,优化问题的输入为外参矩阵和空间点坐标,输出为重投影误差。在实现时,需要将输入向量中的前四个元素转换为四元数和平移向量,然后计算左右相机的投影矩阵和空间点的齐次坐标,最后计算重投影误差。

相关推荐

最新推荐

recommend-type

单目、双目相机的标定原理以及图解

二是通过标定过程,利用三维点和它们在图像上的投影,确定相机的内参数和外参数,从而实现三维场景的重构和测距。 相机标定涉及四个主要的坐标系: 1. 世界坐标系:用户定义的三维空间坐标系,用于描述物体和相机在...
recommend-type

c++代码实现tea加密算法的实例详解

本文将详细介绍如何使用C++实现TEA加密算法,并探讨其在实际应用中的注意事项。 TEA加密算法的核心在于其加密过程,由`tea_encrypt`和`tea_decrypt`两个函数实现。这两个函数分别用于加密和解密,它们接受两个32位...
recommend-type

C++贪心算法实现活动安排问题(实例代码)

C++贪心算法实现活动安排问题实例代码 C++贪心算法是一种常用的算法思想,贪心算法的核心思想是,每一步都采取当前最优的选择,以期望达到全局最优的解。贪心算法的应用非常广泛,如活动安排问题、Huffman编码、...
recommend-type

使用C++实现全排列算法的方法详解

总的来说,使用C++实现全排列算法涉及对递增进位制和递减进位制数的理解与操作,通过映射和还原过程生成所有可能的排列。这种算法不仅在编程竞赛和算法设计中常见,也是解决实际问题如密码学、组合优化等领域的重要...
recommend-type

C++实现分水岭算法(Watershed Algorithm)

10. C++实现分水岭算法:可以使用C++语言实现分水岭算法,需要包含多个头文件,如:、、等,并定义了多个类型,如:GVVoid、GVBoolean、GVChar等。 这些知识点是C++实现分水岭算法的核心内容,对于图像处理和计算机...
recommend-type

IPQ4019 QSDK开源代码资源包发布

资源摘要信息:"IPQ4019是高通公司针对网络设备推出的一款高性能处理器,它是为需要处理大量网络流量的网络设备设计的,例如无线路由器和网络存储设备。IPQ4019搭载了强大的四核ARM架构处理器,并且集成了一系列网络加速器和硬件加密引擎,确保网络通信的速度和安全性。由于其高性能的硬件配置,IPQ4019经常用于制造高性能的无线路由器和企业级网络设备。 QSDK(Qualcomm Software Development Kit)是高通公司为了支持其IPQ系列芯片(包括IPQ4019)而提供的软件开发套件。QSDK为开发者提供了丰富的软件资源和开发文档,这使得开发者可以更容易地开发出性能优化、功能丰富的网络设备固件和应用软件。QSDK中包含了内核、驱动、协议栈以及用户空间的库文件和示例程序等,开发者可以基于这些资源进行二次开发,以满足不同客户的需求。 开源代码(Open Source Code)是指源代码可以被任何人查看、修改和分发的软件。开源代码通常发布在公共的代码托管平台,如GitHub、GitLab或SourceForge上,它们鼓励社区协作和知识共享。开源软件能够通过集体智慧的力量持续改进,并且为开发者提供了一个测试、验证和改进软件的机会。开源项目也有助于降低成本,因为企业或个人可以直接使用社区中的资源,而不必从头开始构建软件。 U-Boot是一种流行的开源启动加载程序,广泛用于嵌入式设备的引导过程。它支持多种处理器架构,包括ARM、MIPS、x86等,能够初始化硬件设备,建立内存空间的映射,从而加载操作系统。U-Boot通常作为设备启动的第一段代码运行,它为系统提供了灵活的接口以加载操作系统内核和文件系统。 标题中提到的"uci-2015-08-27.1.tar.gz"是一个开源项目的压缩包文件,其中"uci"很可能是指一个具体项目的名称,比如U-Boot的某个版本或者是与U-Boot配置相关的某个工具(U-Boot Config Interface)。日期"2015-08-27.1"表明这是该项目的2015年8月27日的第一次更新版本。".tar.gz"是Linux系统中常用的归档文件格式,用于将多个文件打包并进行压缩,方便下载和分发。" 描述中复述了标题的内容,强调了文件是关于IPQ4019处理器的QSDK资源,且这是一个开源代码包。此处未提供额外信息。 标签"软件/插件"指出了这个资源的性质,即它是一个软件资源,可能包含程序代码、库文件或者其他可以作为软件一部分的插件。 在文件名称列表中,"uci-2015-08-27.1"与标题保持一致,表明这是一个特定版本的软件或代码包。由于实际的文件列表中只提供了这一项,我们无法得知更多的文件信息,但可以推测这是一个单一文件的压缩包。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【PDF表格创建与编辑】:使用Apache PDFBox和iText库制作表格,表格处理不求人

![java 各种pdf处理常用库介绍与使用](https://img-blog.csdnimg.cn/img_convert/6ae15afdef45b1d8fe6d289f0065d18c.png) # 1. PDF表格创建与编辑概述 在当今数字化时代,PDF格式因其可移植性和可维护性成为了电子文档的首选。在诸多应用场景中,表格作为一种重要的信息传递工具,其创建与编辑的需求日益增长。本章节将为读者提供一个关于PDF表格创建与编辑的概述,为后续章节中使用Apache PDFBox和iText库进行深入探讨奠定基础。 ## 1.1 PDF表格的作用与重要性 PDF表格在商务沟通、数据分析
recommend-type

python输出txt文件

在Python中,你可以使用内置的`open()`函数来创建和写入TXT文件。下面是一个简单的例子: ```python # 打开文件(如果不存在则创建) with open('example.txt', 'w') as file: # 写入文本内容 file.write('这是你要写入的内容') # 如果你想追加内容而不是覆盖原有文件 # 使用 'a' 模式(append) # with open('example.txt', 'a') as file: # file.write('\n这是追加的内容') # 关闭文件时会自动调用 `close()` 方法,但使
recommend-type

高频组电赛必备:掌握数字频率合成模块要点

资源摘要信息:"2022年电赛 高频组必备模块 数字频率合成模块" 数字频率合成(DDS,Direct Digital Synthesis)技术是现代电子工程中的一种关键技术,它允许通过数字方式直接生成频率可调的模拟信号。本模块是高频组电赛参赛者必备的组件之一,对于参赛者而言,理解并掌握其工作原理及应用是至关重要的。 本数字频率合成模块具有以下几个关键性能参数: 1. 供电电压:模块支持±5V和±12V两种供电模式,这为用户提供了灵活的供电选择。 2. 外部晶振:模块自带两路输出频率为125MHz的外部晶振,为频率合成提供了高稳定性的基准时钟。 3. 输出信号:模块能够输出两路频率可调的正弦波信号。其中,至少有一路信号的幅度可以编程控制,这为信号的调整和应用提供了更大的灵活性。 4. 频率分辨率:模块提供的频率分辨率为0.0291Hz,这样的精度意味着可以实现非常精细的频率调节,以满足高频应用中的严格要求。 5. 频率计算公式:模块输出的正弦波信号频率表达式为 fout=(K/2^32)×CLKIN,其中K为设置的频率控制字,CLKIN是外部晶振的频率。这一计算方式表明了频率输出是通过编程控制的频率控制字来设定,从而实现高精度的频率合成。 在高频组电赛中,参赛者不仅需要了解数字频率合成模块的基本特性,还应该能够将这一模块与其他模块如移相网络模块、调幅调频模块、AD9854模块和宽带放大器模块等结合,以构建出性能更优的高频信号处理系统。 例如,移相网络模块可以实现对信号相位的精确控制,调幅调频模块则能够对信号的幅度和频率进行调整。AD9854模块是一种高性能的DDS芯片,可以用于生成复杂的波形。而宽带放大器模块则能够提供足够的增益和带宽,以保证信号在高频传输中的稳定性和强度。 在实际应用中,电赛参赛者需要根据项目的具体要求来选择合适的模块组合,并进行硬件的搭建与软件的编程。对于数字频率合成模块而言,还需要编写相应的控制代码以实现对K值的设定,进而调节输出信号的频率。 交流与讨论在电赛准备过程中是非常重要的。与队友、指导老师以及来自同一领域的其他参赛者进行交流,不仅可以帮助解决技术难题,还可以相互启发,激发出更多创新的想法和解决方案。 总而言之,对于高频组的电赛参赛者来说,数字频率合成模块是核心组件之一。通过深入了解和应用该模块的特性,结合其他模块的协同工作,参赛者将能够构建出性能卓越的高频信号处理设备,从而在比赛中取得优异成绩。