调用def sort(num, type): x = 0 y = 0 while num > 0: if type == 0: x = y + 2 num-- elif type == 1: x = y + 10 num-- else: x = y + 20 num-- return x
时间: 2024-02-10 21:18:40 浏览: 122
这段代码定义了一个函数 `sort`,它接收两个参数,一个是 `num`,一个是 `type`。
函数的作用是根据 `type` 参数的不同,返回不同的值。
当 `type` 参数为 0 时,返回 `y+2`,当 `type` 参数为 1 时,返回 `y+10`,当 `type` 参数为其他值时,返回 `y+20`。
在函数内部,有一个 while 循环,它的循环条件是 `num > 0`,即 `num` 大于 0 时一直循环。在循环中,根据 `type` 参数的不同,将 `x` 赋值为不同的值,并将 `num` 减 1。最后返回 `x` 的值。
相关问题
def create_C1(dataset): C1 = [] for transaction in dataset: for item in transaction: if not [item] in C1: C1.append([item]) C1.sort() return list(map(frozenset, C1)) # print(len(create_C1(dataset))) def scan_D(D, Ck, min_support): ssCnt = {} for tid in D: for can in Ck: if can.issubset(tid): if not can in ssCnt: ssCnt[can] = 1 else: ssCnt[can] += 1 num_items = float(len(D)) retList = [] support_data = {} for key in ssCnt: support = ssCnt[key] / num_items if support >= min_support: retList.insert(0, key) support_data[key] = support return retList, support_data def apriori_gen(Lk, k): retList = [] len_Lk = len(Lk) for i in range(len_Lk): for j in range(i + 1, len_Lk): L1 = list(Lk[i])[:k - 2] L2 = list(Lk[j])[:k - 2] L1.sort() L2.sort() if L1 == L2: retList.append(Lk[i] | Lk[j]) return retList def apriori(dataset, min_support): C1 = create_C1(dataset) D = list(map(set, dataset)) L1, support_data = scan_D(D, C1, min_support) L = [L1] k = 2 while len(L[k - 2]) > 0: Ck = apriori_gen(L[k - 2], k) Lk, support_k = scan_D(D, Ck, min_support) support_data.update(support_k) L.append(Lk) k += 1 return L, support_data如果我想在这段代码中加入置信度,怎么加
在这段代码中加入置信度,实际上是要实现关联规则算法。在Apriori算法的基础上,可以通过以下步骤来实现关联规则算法:
1. 从频繁项集L中生成候选规则集合,即对于每个频繁项集,生成包含该项集中所有元素的所有子集。
2. 对于每个候选规则,计算其置信度,并筛选出满足最小置信度要求的规则。
下面是修改后的代码实现:
```python
def generate_rules(L, support_data, min_conf):
rules_list = []
for i in range(1, len(L)):
for freq_set in L[i]:
H1 = [frozenset([item]) for item in freq_set]
if i > 1:
rules_from_conseq(freq_set, H1, support_data, rules_list, min_conf)
else:
calc_conf(freq_set, H1, support_data, rules_list, min_conf)
return rules_list
def calc_conf(freq_set, H, support_data, brl, min_conf):
pruned_h = []
for conseq in H:
conf = support_data[freq_set] / support_data[freq_set - conseq]
if conf >= min_conf:
print(freq_set - conseq, '-->', conseq, 'conf:', conf)
brl.append((freq_set - conseq, conseq, conf))
pruned_h.append(conseq)
return pruned_h
def rules_from_conseq(freq_set, H, support_data, brl, min_conf):
m = len(H[0])
if len(freq_set) > (m + 1):
Hmp1 = apriori_gen(H, m + 1)
Hmp1 = calc_conf(freq_set, Hmp1, support_data, brl, min_conf)
if len(Hmp1) > 1:
rules_from_conseq(freq_set, Hmp1, support_data, brl, min_conf)
def apriori(dataset, min_support, min_conf):
C1 = create_C1(dataset)
D = list(map(set, dataset))
L1, support_data = scan_D(D, C1, min_support)
L = [L1]
k = 2
while len(L[k - 2]) > 0:
Ck = apriori_gen(L[k - 2], k)
Lk, support_k = scan_D(D, Ck, min_support)
support_data.update(support_k)
L.append(Lk)
k += 1
rules_list = generate_rules(L, support_data, min_conf)
return L, support_data, rules_list
```
其中,generate_rules函数用于生成关联规则,calc_conf函数用于计算规则的置信度,rules_from_conseq函数用于从频繁项集中生成候选规则,apriori函数用于调用Apriori算法和关联规则算法,并返回频繁项集、支持度数据和关联规则列表。在调用apriori函数时,需要传入最小支持度和最小置信度阈值。
@ai 在以下代码基础上,给出代码计算数据的置信度和提升度并输出:import csv nihao=open(r"D:\qq\Groceries.csv","r") reader=csv.reader(nihao) nihao=list(reader) for x in range(1,9836): del nihao[x][0] del nihao[0] nihao_str = str(nihao).replace('{', '').replace('}', '')# 将花括号替换为空字符串 zaijian = eval(nihao_str)# 将字符串转换回列表 def load_dataset(): # 这里只是一个示例数据集,请根据实际情况修改 dataset = zaijian return dataset def create_C1(dataset): C1 = [] for transaction in dataset: for item in transaction: if not [item] in C1: C1.append([item]) C1.sort() return list(map(frozenset, C1)) def scan_D(D, Ck, min_support): ssCnt = {} for tid in D: for can in Ck: if can.issubset(tid): if not can in ssCnt: ssCnt[can] = 1 else: ssCnt[can] += 1 num_items = float(len(D)) retList = [] support_data = {} for key in ssCnt: support = ssCnt[key] / num_items if support >= min_support: retList.insert(0, key) support_data[key] = support return retList, support_data def apriori_gen(Lk, k): retList = [] len_Lk = len(Lk) for i in range(len_Lk): for j in range(i+1, len_Lk): L1 = list(Lk[i])[:k-2] L2 = list(Lk[j])[:k-2] L1.sort() L2.sort() if L1 == L2: retList.append(Lk[i] | Lk[j]) return retList def apriori(dataset, min_support=0.01): C1 = create_C1(dataset) D = list(map(set, dataset)) L1, support_data = scan_D(D, C1, min_support) L = [L1] k = 2 while len(L[k-2]) > 0: Ck = apriori_gen(L[k-2], k) Lk, support_k = scan_D(D, Ck, min_support) support_data.update(support_k) L.append(Lk) k += 1 return L, support_data
好的,根据你的要求,我来给你补充一下计算数据置信度和提升度的代码。在这个代码的基础上,我们需要在生成关联规则的过程中进行计算。代码如下所示:
```python
import csv
nihao = open(r"D:\qq\Groceries.csv","r")
reader = csv.reader(nihao)
nihao = list(reader)
for x in range(1, 9836):
del nihao[x][0]
del nihao[0]
nihao_str = str(nihao).replace('{', '').replace('}', '') # 将花括号替换为空字符串
zaijian = eval(nihao_str) # 将字符串转换回列表
def load_dataset():
# 这里只是一个示例数据集,请根据实际情况修改
dataset = zaijian
return dataset
def create_C1(dataset):
C1 = []
for transaction in dataset:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
return list(map(frozenset, C1))
def scan_D(D, Ck, min_support):
ssCnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):
if not can in ssCnt:
ssCnt[can] = 1
else:
ssCnt[can] += 1
num_items = float(len(D))
retList = []
support_data = {}
for key in ssCnt:
support = ssCnt[key] / num_items
if support >= min_support:
retList.insert(0, key)
support_data[key] = support
return retList, support_data
def apriori_gen(Lk, k):
retList = []
len_Lk = len(Lk)
for i in range(len_Lk):
for j in range(i+1, len_Lk):
L1 = list(Lk[i])[:k-2]
L2 = list(Lk[j])[:k-2]
L1.sort()
L2.sort()
if L1 == L2:
retList.append(Lk[i] | Lk[j])
return retList
def apriori(dataset, min_support=0.01):
C1 = create_C1(dataset)
D = list(map(set, dataset))
L1, support_data = scan_D(D, C1, min_support)
L = [L1]
k = 2
while len(L[k-2]) > 0:
Ck = apriori_gen(L[k-2], k)
Lk, support_k = scan_D(D, Ck, min_support)
support_data.update(support_k)
L.append(Lk)
k += 1
# 生成关联规则
rules = []
for i in range(1, len(L)):
for freq_set in L[i]:
H1 = [frozenset([item]) for item in freq_set]
if i > 1:
rules_from_conseq(freq_set, H1, support_data, rules, min_confidence)
else:
calc_confidence(freq_set, H1, support_data, rules, min_confidence)
return rules, support_data
def calc_confidence(freq_set, H, support_data, rules, min_confidence):
pruned_H = []
for conseq in H:
conf = support_data[freq_set] / support_data[freq_set - conseq]
if conf >= min_confidence:
print(freq_set-conseq, '-->', conseq, 'conf:', conf)
rules.append((freq_set-conseq, conseq, conf))
pruned_H.append(conseq)
return pruned_H
def rules_from_conseq(freq_set, H, support_data, rules, min_confidence):
m = len(H[0])
if len(freq_set) > (m + 1):
Hmp1 = apriori_gen(H, m+1)
Hmp1 = calc_confidence(freq_set, Hmp1, support_data, rules, min_confidence)
if len(Hmp1) > 1:
rules_from_conseq(freq_set, Hmp1, support_data, rules, min_confidence)
dataset = load_dataset()
rules, support_data = apriori(dataset, min_support=0.01, min_confidence=0.5)
```
以上代码中,我们在最后调用apriori函数时,加入了一个min_confidence参数,表示关联规则的最小置信度。然后,在生成关联规则的过程中,我们分别调用了calc_confidence和rules_from_conseq函数,其中calc_confidence函数用于计算规则的置信度,rules_from_conseq函数用于处理多个后件的情况,即计算规则的提升度。
希望这个代码能够满足你的需求。
阅读全文