在c++中使用opencv,用sift特征匹配算法实现两张图像的匹配,并对待测图片进行仿射变换
时间: 2024-04-07 19:34:04 浏览: 84
C++与opencv实现常用图像处理与仿射变换
在C++中使用OpenCV和SIFT特征匹配算实现两张图像的匹配,并待测图片进行仿射变换,可以照以下步骤进行:
1. 首先确保已经安装了OpenCV库在代码中引入相关的头文件:
```cpp
#include <opencv2/.hpp>
#include <opencv2/features2d.hpp```
2. 加载测的图片和参考图片:
```cpp
cv::Mat image1 = cv::imread("image1.jpg", cv::IMREAD_GRAYSCALE);
cv::Mat image2 = cv::imread("image2.jpg", cv::IMREAD_GRAYSCALE);
cv::Mat testImage = cv::imread("test_image.jpg", cv::IMREAD_GRAYSCALE);
```
3. 创建SIFT对象并检测关键点和计算描述符:
```cpp
cv::Ptr<cv::SIFT> sift = cv::SIFT::create();
std::vector<cv::KeyPoint> keypoints1, keypoints2, keypointsTest;
cv::Mat descriptors1, descriptors2, descriptorsTest;
sift->detectAndCompute(image1, cv::noArray(), keypoints1, descriptors1);
sift->detectAndCompute(image2, cv::noArray(), keypoints2, descriptors2);
sift->detectAndCompute(testImage, cv::noArray(), keypointsTest, descriptorsTest);
```
4. 进行特征匹配:
```cpp
cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create(cv::DescriptorMatcher::FLANNBASED);
std::vector<cv::DMatch> matches;
matcher->match(descriptorsTest, descriptors2, matches);
```
5. 对匹配结果进行筛选和排序,可以根据距离进行筛选,取前N个最佳匹配:
```cpp
double maxDistance = 0.0, minDistance = 100.0;
for (int i = 0; i < descriptorsTest.rows; i++) {
double dist = matches[i].distance;
if (dist < minDistance) minDistance = dist;
if (dist > maxDistance) maxDistance = dist;
}
std::vector<cv::DMatch> goodMatches;
for (int i = 0; i < descriptorsTest.rows; i++) {
if (matches[i].distance <= std::max(2 * minDistance, 0.02)) {
goodMatches.push_back(matches[i]);
}
}
std::sort(goodMatches.begin(), goodMatches.end());
```
6. 提取匹配的关键点:
```cpp
std::vector<cv::Point2f> matchedPoints1, matchedPoints2;
for (size_t i = 0; i < goodMatches.size(); i++) {
matchedPoints1.push_back(keypointsTest[goodMatches[i].queryIdx].pt);
matchedPoints2.push_back(keypoints2[goodMatches[i].trainIdx].pt);
}
```
7. 进行仿射变换:
```cpp
cv::Mat affineMatrix = cv::estimateAffinePartial2D(matchedPoints1, matchedPoints2).getAffineTransform();
cv::Mat transformedImage;
cv::warpAffine(testImage, transformedImage, affineMatrix, image2.size());
```
8. 可以将匹配结果和仿射变换后的图像进行展示:
```cpp
cv::Mat matchedImage;
cv::drawMatches(testImage, keypointsTest, image2, keypoints2, goodMatches, matchedImage);
cv::imshow("Matches", matchedImage);
cv::imshow("Transformed Image", transformedImage);
cv::waitKey(0);
```
这样就完成了使用SIFT特征匹配算法在C++中实现两张图像的匹配,并对待测图片进行仿射变换的过程。请注意,上述代码仅为示例,可能需要根据实际情况进行适当修改。
阅读全文