alpha_gradient = tape.gradient(alpha_loss, [self.log_alpha])
时间: 2024-02-11 18:08:26 浏览: 129
这个报错可能是因为在 `self.log_alpha` 变量的定义中,您没有使用 `tf.Variable` 来定义变量。在 TensorFlow 中,只有 `tf.Variable` 类型的对象才能够通过反向传播进行梯度更新。因此,如果您想要对 `self.log_alpha` 进行梯度更新,您应该将其定义为 `tf.Variable` 类型的对象。
例如,您可以这样定义 `self.log_alpha`:
```
self.log_alpha = tf.Variable(initial_value=-1.0, dtype=tf.float32, name='log_alpha')
```
在上面的代码中,我们使用 `tf.Variable` 定义了一个名为 `log_alpha` 的变量,并将其初始值设置为 `-1.0`。这样,在调用 `tape.gradient` 函数时,就可以计算关于 `self.log_alpha` 的梯度了。
如果您已经使用 `tf.Variable` 定义了 `self.log_alpha`,那么可能是其他地方出现了问题。您可以检查代码中是否有其他地方对 `self.log_alpha` 进行了重新定义,或者检查 `alpha_loss` 的计算方式是否正确。
相关问题
以Tensorflow为框架编写带有更新温度系数alpha的SAC算法
好的,以下是基于Tensorflow框架编写带有更新温度系数alpha的SAC算法的代码示例:
```python
import tensorflow as tf
import numpy as np
class SAC:
def __init__(self, state_dim, action_dim, alpha_init=0.1, alpha_lr=1e-3, alpha_target=0.2):
self.state_dim = state_dim
self.action_dim = action_dim
self.alpha_init = alpha_init
self.alpha_lr = alpha_lr
self.alpha_target = alpha_target
self.alpha = tf.Variable(self.alpha_init, dtype=tf.float32, name='alpha')
self.policy = self._build_policy_net()
self.q1_net, self.q2_net = self._build_q_nets()
self.target_q1_net, self.target_q2_net = self._build_q_nets()
self.q1_optimizer = tf.optimizers.Adam(learning_rate=1e-3)
self.q2_optimizer = tf.optimizers.Adam(learning_rate=1e-3)
self.policy_optimizer = tf.optimizers.Adam(learning_rate=1e-3)
self.update_target_q1_net = self._get_target_net_update_op(self.q1_net, self.target_q1_net)
self.update_target_q2_net = self._get_target_net_update_op(self.q2_net, self.target_q2_net)
def _build_policy_net(self):
input_layer = tf.keras.layers.Input(shape=(self.state_dim,))
hidden_layer_1 = tf.keras.layers.Dense(256, activation='relu')(input_layer)
hidden_layer_2 = tf.keras.layers.Dense(256, activation='relu')(hidden_layer_1)
output_layer = tf.keras.layers.Dense(self.action_dim, activation='tanh')(hidden_layer_2)
mean = tf.keras.layers.Lambda(lambda x: x * 2)(output_layer)
log_std = tf.Variable(-0.5 * np.ones(self.action_dim, dtype=np.float32), name='log_std')
std = tf.exp(log_std)
dist = tfp.distributions.Normal(mean, std)
action = dist.sample()
policy = tf.keras.models.Model(inputs=input_layer, outputs=[action, mean, std])
return policy
def _build_q_nets(self):
state_input = tf.keras.layers.Input(shape=(self.state_dim,))
action_input = tf.keras.layers.Input(shape=(self.action_dim,))
concat_layer = tf.keras.layers.Concatenate()([state_input, action_input])
hidden_layer_1 = tf.keras.layers.Dense(256, activation='relu')(concat_layer)
hidden_layer_2 = tf.keras.layers.Dense(256, activation='relu')(hidden_layer_1)
q_output = tf.keras.layers.Dense(1)(hidden_layer_2)
q_net = tf.keras.models.Model(inputs=[state_input, action_input], outputs=q_output)
return q_net, q_net
def _get_target_net_update_op(self, net, target_net, tau=0.005):
target_weights = target_net.get_weights()
weights = net.get_weights()
update_target_weights = [target_weights[i] * (1 - tau) + weights[i] * tau for i in range(len(weights))]
return tf.group([target_net.weights[i].assign(update_target_weights[i]) for i in range(len(target_weights))])
def get_action(self, state):
action, mean, std = self.policy(state)
return action.numpy()[0], mean.numpy()[0], std.numpy()[0]
def update(self, memory, batch_size=100, gamma=0.99, tau=0.005, alpha_target_entropy=-np.prod(self.action_dim)):
state, action, reward, next_state, done = memory.sample(batch_size)
with tf.GradientTape(persistent=True) as tape:
# Compute Q-values
q1 = self.q1_net([state, action])
q2 = self.q2_net([state, action])
# Compute target Q-values
target_action, target_mean, target_std = self.policy(next_state)
target_dist = tfp.distributions.Normal(target_mean, target_std)
target_entropy = -target_dist.entropy()
target_q1 = self.target_q1_net([next_state, target_action])
target_q2 = self.target_q2_net([next_state, target_action])
target_q = tf.minimum(target_q1, target_q2) - self.alpha * target_entropy
target_q = tf.stop_gradient(target_q)
td_error_1 = tf.abs(q1 - (reward + gamma * target_q * (1 - done)))
td_error_2 = tf.abs(q2 - (reward + gamma * target_q * (1 - done)))
# Compute losses and gradients
q1_loss = tf.reduce_mean(td_error_1)
q2_loss = tf.reduce_mean(td_error_2)
q1_grads = tape.gradient(q1_loss, self.q1_net.trainable_variables)
q2_grads = tape.gradient(q2_loss, self.q2_net.trainable_variables)
# Update Q-networks
self.q1_optimizer.apply_gradients(zip(q1_grads, self.q1_net.trainable_variables))
self.q2_optimizer.apply_gradients(zip(q2_grads, self.q2_net.trainable_variables))
# Compute policy loss and gradients
action, mean, std = self.policy(state)
dist = tfp.distributions.Normal(mean, std)
entropy = dist.entropy()
q1 = self.q1_net([state, action])
q2 = self.q2_net([state, action])
q = tf.minimum(q1, q2)
policy_loss = tf.reduce_mean(self.alpha * entropy - q)
policy_grads = tape.gradient(policy_loss, self.policy.trainable_variables)
self.policy_optimizer.apply_gradients(zip(policy_grads, self.policy.trainable_variables))
# Update target networks
self.update_target_q1_net
self.update_target_q2_net
# Update alpha
alpha_loss = -tf.reduce_mean(self.alpha * (entropy + alpha_target_entropy))
alpha_grads = tape.gradient(alpha_loss, [self.alpha])
self.alpha_optimizer.apply_gradients(zip(alpha_grads, [self.alpha]))
# Update temperature coefficient alpha
self.alpha = tf.clip_by_value(self.alpha + self.alpha_lr * (self.alpha_target - tf.exp(self.log_alpha)), 1e-4, 1e2)
```
在这个SAC算法的实现中,我们引入了一个温度系数alpha,其初始值为alpha_init,目标值为alpha_target。在每次更新中,我们会计算出当前策略分布和目标分布的交叉熵,并将其乘以alpha,得到一个entropy term,用来调整策略的探索程度。我们同时也会计算出一个alpha_loss,用来更新温度系数alpha。
需要注意的是,在更新温度系数alpha时,我们对其进行了一个clip操作,将其限制在了一个较小的范围内,以防止alpha的值过大或过小导致算法失效。
soft actor critic tensorflow1.x code
以下是一个使用TensorFlow 1.x实现Soft Actor-Critic(SAC)算法的代码示例:
```python
import tensorflow as tf
import numpy as np
import gym
# Hyperparameters
gamma = 0.99
tau = 0.005
hidden_sizes = [256, 256]
batch_size = 100
buffer_size = 10000
learning_rate = 0.0003
alpha = 0.2
target_entropy = -1.0
# Create the replay buffer
class ReplayBuffer:
def __init__(self, obs_dim, act_dim, size):
self.obs_buf = np.zeros((size, obs_dim), dtype=np.float32)
self.act_buf = np.zeros((size, act_dim), dtype=np.float32)
self.rew_buf = np.zeros(size, dtype=np.float32)
self.next_obs_buf = np.zeros((size, obs_dim), dtype=np.float32)
self.done_buf = np.zeros(size, dtype=np.float32)
self.ptr, self.size, self.max_size = 0, 0, size
def store(self, obs, act, rew, next_obs, done):
self.obs_buf[self.ptr] = obs
self.act_buf[self.ptr] = act
self.rew_buf[self.ptr] = rew
self.next_obs_buf[self.ptr] = next_obs
self.done_buf[self.ptr] = done
self.ptr = (self.ptr+1) % self.max_size
self.size = min(self.size+1, self.max_size)
def sample_batch(self, batch_size=batch_size):
idxs = np.random.randint(0, self.size, size=batch_size)
return dict(obs=self.obs_buf[idxs],
act=self.act_buf[idxs],
rew=self.rew_buf[idxs],
next_obs=self.next_obs_buf[idxs],
done=self.done_buf[idxs])
# Create the actor and critic networks
class MLP(tf.keras.Model):
def __init__(self, sizes, activation=tf.nn.relu, output_activation=None):
super(MLP, self).__init__()
self.layers_ = []
for i, size in enumerate(sizes[:-1]):
layer = tf.keras.layers.Dense(units=size, activation=activation)
self.layers_.append(layer)
self.layers_.append(tf.keras.layers.Dense(units=sizes[-1], activation=output_activation))
def call(self, inputs):
x = inputs
for layer in self.layers_:
x = layer(x)
return x
class ActorCritic(tf.keras.Model):
def __init__(self, obs_dim, act_dim, hidden_sizes, activation=tf.nn.relu, output_activation=None):
super(ActorCritic, self).__init__()
self.q1 = MLP(hidden_sizes + [1], activation, output_activation)
self.q2 = MLP(hidden_sizes + [1], activation, output_activation)
self.v = MLP(hidden_sizes + [1], activation, output_activation)
self.pi = MLP(hidden_sizes + [act_dim], activation, tf.nn.tanh)
def call(self, obs, act=None):
q1 = self.q1(tf.concat([obs, act], axis=-1))
q2 = self.q2(tf.concat([obs, act], axis=-1))
v = self.v(obs)
pi = self.pi(obs)
return q1, q2, v, pi
def act(self, obs):
pi = self.pi(obs)
return pi.numpy()
# Create the SAC agent
class SAC:
def __init__(self, obs_dim, act_dim, hidden_sizes, buffer_size, batch_size, learning_rate, alpha, gamma, tau, target_entropy):
self.q_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
self.v_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
self.pi_optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
self.replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=buffer_size)
self.batch_size = batch_size
self.alpha = alpha
self.gamma = gamma
self.tau = tau
self.target_entropy = target_entropy
self.obs_dim = obs_dim
self.act_dim = act_dim
self.hidden_sizes = hidden_sizes
self.actor_critic = ActorCritic(obs_dim, act_dim, hidden_sizes)
def update(self, data):
obs = data['obs']
act = data['act']
rew = data['rew']
next_obs = data['next_obs']
done = data['done']
with tf.GradientTape(persistent=True) as tape:
q1, q2, v, pi = self.actor_critic(obs, act)
_, _, _, next_pi = self.actor_critic(next_obs)
v_target = self.target_v(next_obs, next_pi)
q_target = rew + self.gamma * (1 - done) * v_target
q1_loss = tf.reduce_mean(tf.square(q1 - q_target))
q2_loss = tf.reduce_mean(tf.square(q2 - q_target))
v_loss = tf.reduce_mean(tf.square(v - v_target))
pi_loss = tf.reduce_mean(self.alpha * pi.log_prob(act) - q1)
alpha_loss = tf.reduce_mean(-self.alpha * (self.target_entropy - pi.entropy()))
q1_grads = tape.gradient(q1_loss, self.actor_critic.q1.trainable_variables)
self.q_optimizer.apply_gradients(zip(q1_grads, self.actor_critic.q1.trainable_variables))
q2_grads = tape.gradient(q2_loss, self.actor_critic.q2.trainable_variables)
self.q_optimizer.apply_gradients(zip(q2_grads, self.actor_critic.q2.trainable_variables))
v_grads = tape.gradient(v_loss, self.actor_critic.v.trainable_variables)
self.v_optimizer.apply_gradients(zip(v_grads, self.actor_critic.v.trainable_variables))
pi_grads = tape.gradient(pi_loss, self.actor_critic.pi.trainable_variables)
self.pi_optimizer.apply_gradients(zip(pi_grads, self.actor_critic.pi.trainable_variables))
alpha_grads = tape.gradient(alpha_loss, [self.alpha])
self.alpha = tf.clip_by_value(self.alpha - learning_rate * alpha_grads[0], 0, 1)
del tape
def target_v(self, obs, pi):
q1, q2, _, _ = self.actor_critic(obs, pi)
q = tf.minimum(q1, q2)
v_target = tf.reduce_mean(q - self.alpha * pi.entropy())
return v_target
def train(self):
data = self.replay_buffer.sample_batch(self.batch_size)
self.update(data)
def store(self, obs, act, rew, next_obs, done):
self.replay_buffer.store(obs, act, rew, next_obs, done)
def act(self, obs):
return self.actor_critic.act(obs)
def save(self, save_path):
self.actor_critic.save_weights(save_path)
def load(self, load_path):
self.actor_critic.load_weights(load_path)
# Train the SAC agent on the gym environment
env = gym.make('Pendulum-v0')
obs_dim = env.observation_space.shape[0]
act_dim = env.action_space.shape[0]
sac = SAC(obs_dim, act_dim, hidden_sizes, buffer_size, batch_size, learning_rate, alpha, gamma, tau, target_entropy)
for i in range(1000):
obs = env.reset()
total_reward = 0
done = False
while not done:
act = sac.act(obs.reshape(1, -1))
next_obs, rew, done, _ = env.step(act[0])
sac.store(obs, act, rew, next_obs, done)
sac.train()
obs = next_obs
total_reward += rew
print('Epoch: {}, Total Reward: {:.2f}'.format(i, total_reward))
sac.save('sac_model')
```
请注意,这只是一个基本的实现示例,其中有许多可以进行改进和优化的方面。
阅读全文