episode-by-episode
时间: 2023-12-29 21:00:30 浏览: 137
"episode-by-episode"是一个用来描述按照剧集的顺序来观看和讨论电视剧或者广播节目的术语。这种方式可以让观众和听众更好地理解剧集的情节、角色发展和故事线,同时也可以让他们更容易进行交流和讨论。
在按照"episode-by-episode"的方式观看剧集时,观众们可以更深入地了解每一集中的情节发展,角色关系和剧情走向。这种方式也可以让观众更好地跟上剧集的发展,避免遗漏重要的细节和情节。
此外,按照"episode-by-episode"的方式来讨论剧集也可以让观众们更深入地探讨剧集中的主题和议题,从而更好地理解剧集的意义和价值。观众们可以分享自己对每一集的看法和感受,从而进行深入的讨论和交流。
总的来说,按照"episode-by-episode"的方式来观看和讨论剧集可以让观众更深入地了解剧集的内容和意义,同时也可以促进观众之间的交流和讨论。这种方式不仅可以增强观众对剧集的理解,还可以增进观众之间的交流和共鸣。
相关问题
请采用python以Tensorflow为架构编写《Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor》版本的SAC强化学习算法代码
以下是基于Tensorflow的《Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor》版本的SAC强化学习算法的Python代码:
```python
import tensorflow as tf
import numpy as np
import gym
# Create actor network
class Actor(tf.keras.Model):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.layer1 = tf.keras.layers.Dense(256, activation='relu')
self.layer2 = tf.keras.layers.Dense(256, activation='relu')
self.mu_layer = tf.keras.layers.Dense(action_dim, activation='tanh')
self.sigma_layer = tf.keras.layers.Dense(action_dim, activation='softplus')
self.max_action = max_action
def call(self, state):
x = self.layer1(state)
x = self.layer2(x)
mu = self.mu_layer(x) * self.max_action
sigma = self.sigma_layer(x) + 1e-4
return mu, sigma
# Create two critic networks
class Critic(tf.keras.Model):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.layer1 = tf.keras.layers.Dense(256, activation='relu')
self.layer2 = tf.keras.layers.Dense(256, activation='relu')
self.layer3 = tf.keras.layers.Dense(1, activation=None)
def call(self, state, action):
x = tf.concat([state, action], axis=1)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x
# Create Soft Actor-Critic (SAC) Agent
class SACAgent:
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action)
self.critic1 = Critic(state_dim, action_dim)
self.critic2 = Critic(state_dim, action_dim)
self.target_critic1 = Critic(state_dim, action_dim)
self.target_critic2 = Critic(state_dim, action_dim)
self.max_action = max_action
self.alpha = tf.Variable(0.1, dtype=tf.float32, name='alpha')
self.gamma = 0.99
self.tau = 0.005
self.optimizer_actor = tf.keras.optimizers.Adam(learning_rate=3e-4)
self.optimizer_critic1 = tf.keras.optimizers.Adam(learning_rate=3e-4)
self.optimizer_critic2 = tf.keras.optimizers.Adam(learning_rate=3e-4)
def get_action(self, state):
state = np.expand_dims(state, axis=0)
mu, sigma = self.actor(state)
dist = tfp.distributions.Normal(mu, sigma)
action = tf.squeeze(dist.sample(1), axis=0)
return action.numpy()
def update(self, replay_buffer, batch_size):
states, actions, rewards, next_states, dones = replay_buffer.sample(batch_size)
with tf.GradientTape(persistent=True) as tape:
# Compute actor loss
mu, sigma = self.actor(states)
dist = tfp.distributions.Normal(mu, sigma)
log_pi = dist.log_prob(actions)
q1 = self.critic1(states, actions)
q2 = self.critic2(states, actions)
q_min = tf.minimum(q1, q2)
alpha_loss = -tf.reduce_mean(self.alpha * (log_pi + self.target_entropy))
actor_loss = -tf.reduce_mean(tf.exp(self.alpha) * log_pi * q_min)
# Compute critic loss
next_mu, next_sigma = self.actor(next_states)
next_dist = tfp.distributions.Normal(next_mu, next_sigma)
next_actions = tf.clip_by_value(next_dist.sample(1), -self.max_action, self.max_action)
target_q1 = self.target_critic1(next_states, next_actions)
target_q2 = self.target_critic2(next_states, next_actions)
target_q = tf.minimum(target_q1, target_q2)
target_q = rewards + self.gamma * (1.0 - dones) * (target_q - tf.exp(self.alpha) * next_dist.entropy())
q1_loss = tf.reduce_mean(tf.square(q1 - target_q))
q2_loss = tf.reduce_mean(tf.square(q2 - target_q))
critic_loss = q1_loss + q2_loss + alpha_loss
# Compute gradients and update weights
actor_grads = tape.gradient(actor_loss, self.actor.trainable_variables)
critic1_grads = tape.gradient(critic_loss, self.critic1.trainable_variables)
critic2_grads = tape.gradient(critic_loss, self.critic2.trainable_variables)
self.optimizer_actor.apply_gradients(zip(actor_grads, self.actor.trainable_variables))
self.optimizer_critic1.apply_gradients(zip(critic1_grads, self.critic1.trainable_variables))
self.optimizer_critic2.apply_gradients(zip(critic2_grads, self.critic2.trainable_variables))
# Update target networks
for w, w_target in zip(self.critic1.weights, self.target_critic1.weights):
w_target.assign(self.tau * w + (1 - self.tau) * w_target)
for w, w_target in zip(self.critic2.weights, self.target_critic2.weights):
w_target.assign(self.tau * w + (1 - self.tau) * w_target)
# Update alpha
alpha_grad = tape.gradient(alpha_loss, self.alpha)
self.alpha.assign_add(1e-4 * alpha_grad)
def save(self, filename):
self.actor.save_weights(filename + '_actor')
self.critic1.save_weights(filename + '_critic1')
self.critic2.save_weights(filename + '_critic2')
def load(self, filename):
self.actor.load_weights(filename + '_actor')
self.critic1.load_weights(filename + '_critic1')
self.critic2.load_weights(filename + '_critic2')
# Create replay buffer
class ReplayBuffer:
def __init__(self, max_size):
self.max_size = max_size
self.buffer = []
self.position = 0
def add(self, state, action, reward, next_state, done):
if len(self.buffer) < self.max_size:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.max_size
def sample(self, batch_size):
indices = np.random.choice(len(self.buffer), batch_size, replace=False)
states, actions, rewards, next_states, dones = [], [], [], [], []
for idx in indices:
state, action, reward, next_state, done = self.buffer[idx]
states.append(np.array(state, copy=False))
actions.append(np.array(action, copy=False))
rewards.append(reward)
next_states.append(np.array(next_state, copy=False))
dones.append(done)
return np.array(states), np.array(actions), np.array(rewards, dtype=np.float32), np.array(next_states), np.array(dones, dtype=np.uint8)
# Create environment and agent
env = gym.make('Pendulum-v0')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
agent = SACAgent(state_dim, action_dim, max_action)
replay_buffer = ReplayBuffer(1000000)
# Train agent
max_episodes = 1000
max_steps = 500
batch_size = 256
update_interval = 1
target_entropy = -action_dim
for episode in range(max_episodes):
state = env.reset()
total_reward = 0
for step in range(max_steps):
action = agent.get_action(state)
next_state, reward, done, _ = env.step(action)
replay_buffer.add(state, action, reward, next_state, done)
if len(replay_buffer.buffer) > batch_size:
agent.update(replay_buffer, batch_size)
state = next_state
total_reward += reward
if done:
break
print("Episode:", episode, "Total Reward:", total_reward)
```
请注意,以上代码仅供参考,并且需要根据具体环境和参数进行调整和完善。
阅读全文