import math import pandas as pd import torch from torch import nn from d2l import torch as d2l class EncoderBlock(nn.Module): """Transformer编码器块""" def __init__(self, key_size, query_size, value_size, num_hiddens,norm_shape, ffn_num_input, ffn_ num_hiddens, num_heads,dropout, use_bias=False, **kwargs): super(EncoderBlock, self).__init__(**kwargs) self.attention = d2l.MultiHeadAttention( key_size, query_size, value_size, num_hiddens, num_heads, dropout, use_bias) self.addnorm1 = AddNorm(norm_shape, dropout) self.ffn = PositionWiseFFN( ffn_num_input, ffn_num_hiddens, num_hiddens) self.addnorm2 = AddNorm(norm_shape, dropout) def forward(self, X, valid_lens): Y = self.addnorm1(X, self.attention(X, X, X, valid_lens)) return self.addnorm2(Y, self.ffn(Y)) X = torch.ones((2, 100, 24)) valid_lens = torch.tensor([3, 2]) encoder_blk = EncoderBlock(24, 24, 24, 24, [100, 24], 24, 48, 8, 0.5) encoder_blk.eval() encoder_blk(X, valid_lens).shape torch.Size([2, 100, 24])

时间: 2024-04-15 07:26:18 浏览: 17
这段代码定义了一个Transformer编码器块(EncoderBlock)的类。该编码器块包含了多头注意力(MultiHeadAttention)、残差连接与层规范化(AddNorm)和基于位置的前馈网络(PositionWiseFFN)。 在初始化方法中,首先创建了一个多头注意力的实例self.attention,然后创建了两个AddNorm实例self.addnorm1和self.addnorm2,分别用于在注意力和前馈网络之后进行残差连接与层规范化。最后创建了一个PositionWiseFFN实例self.ffn。 在前向传播方法中,输入张量X和有效长度valid_lens被输入到多头注意力中进行自注意力计算,并通过残差连接与层规范化进行处理。然后将处理后的张量输入到基于位置的前馈网络中,再次通过残差连接与层规范化进行处理。最后返回处理后的张量Y。 在代码的最后,创建了一个EncoderBlock的实例encoder_blk,并对其进行了评估(eval())。然后,将一个大小为(2, 100, 24)的张量X和有效长度valid_lens输入到encoder_blk中,并打印出输出张量的形状。 结果是一个大小为(2, 100, 24)的张量,表示经过Transformer编码器块后的输出张量的形状与输入张量相同。
相关问题

import math import pandas as pd import torch from torch import nn from d2l import torch as d2l class TransformerEncoder(d2l.Encoder): """Transformer编码器""" def __init__(self, vocab_size, key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, num_layers, dropout, use_bias=False, **kwargs): super(TransformerEncoder, self).__init__(**kwargs) self.num_hiddens = num_hiddens self.embedding = nn.Embedding(vocab_size, num_hiddens) self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout) self.blks = nn.Sequential() for i in range(num_layers): self.blks.add_module("block"+str(i), EncoderBlock(key_size, query_size, value_size, num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens, num_heads, dropout, use_bias)) def forward(self, X, valid_lens, *args): # 因为位置编码值在-1和1之间, # 因此嵌入值乘以嵌入维度的平方根进行缩放, # 然后再与位置编码相加。 X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens)) self.attention_weights = [None] * len(self.blks) for i, blk in enumerate(self.blks): X = blk(X, valid_lens) self.attention_weights[ i] = blk.attention.attention.attention_weights return X X = torch.ones((2, 100, 24)) valid_lens = torch.tensor([3, 2]) encoder_blk = EncoderBlock(24, 24, 24, 24, [100, 24], 24, 48, 8, 0.5) encoder_blk.eval() encoder_blk(X, valid_lens).shape torch.Size([2, 100, 24])

这段代码定义了一个Transformer编码器(TransformerEncoder)的类,它继承自d2l.Encoder。该编码器包含了嵌入层(Embedding)、位置编码层(PositionalEncoding)和多个EncoderBlock组成的序列。 在初始化方法中,首先创建了一个Embedding实例self.embedding,用于将输入的词索引映射为词向量。然后创建了一个PositionalEncoding实例self.pos_encoding,用于对词向量进行位置编码。接下来创建了一个包含多个EncoderBlock的序列self.blks,每个EncoderBlock具有指定的参数。 在前向传播方法中,首先将输入张量X通过嵌入层和位置编码层进行处理。嵌入层将词索引转换为词向量,并与位置编码相加。然后,依次对序列中的每个EncoderBlock进行前向传播,并记录每个Attention层的注意力权重。最后返回处理后的张量X和注意力权重列表。 在代码的最后,创建了一个大小为(2, 100, 24)的张量X和有效长度valid_lens,表示输入和有效长度。然后创建了一个EncoderBlock的实例encoder_blk,并对其进行了评估(eval())。将张量X和有效长度valid_lens输入到encoder_blk中,并打印出输出张量的形状。 结果是一个大小为(2, 100, 24)的张量,表示经过Transformer编码器处理后的输出张量的形状与输入张量相同。

tcn.transformer需要什么依赖库

tcn.transformer是一个基于Transformer架构的时间序列预测模型,需要以下依赖库: 1. PyTorch:深度学习框架 2. numpy:数值计算库 3. pandas:数据处理库 4. scikit-learn:机器学习库 5. matplotlib:绘图库 如果您使用的是Anaconda环境,可以通过以下命令安装: ``` conda install pytorch numpy pandas scikit-learn matplotlib ``` 如果您使用的是pip,可以通过以下命令安装: ``` pip install torch numpy pandas scikit-learn matplotlib ```

相关推荐

最新推荐

recommend-type

毕业设计基于STC12C5A、SIM800C、GPS的汽车防盗报警系统源码.zip

STC12C5A通过GPS模块获取当前定位信息,如果车辆发生异常震动或车主打来电话(主动请求定位),将通过GSM发送一条定位短信到车主手机,车主点击链接默认打开网页版定位,如果有安装高德地图APP将在APP中打开并展示汽车当前位置 GPS模块可以使用多家的GPS模块,需要注意的是,当前程序对应的是GPS北斗双模芯片,故只解析 GNRMC数据,如果你使用GPS芯片则应改为GPRMC数据即可。 系统在初始化的时候会持续短鸣,每初始化成功一部分后将长鸣一声,如果持续短鸣很久(超过20分钟),建议通过串口助手查看系统输出的调试信息,系统串口默认输出从初始化开始的所有运行状态信息。 不过更建议你使用SIM868模块,集成GPS.GSM.GPRS,使用更加方便
recommend-type

基于tensorflow2.x卷积神经网络字符型验证码识别.zip

基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip
recommend-type

自己编写的python 程序计算cpk/ppk

cpk&ppk python 小程序,品友点评
recommend-type

基于Springboot开发的分布式抽奖系统.zip

基于springboot的java毕业&课程设计
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。