C++调用opencv用SURF算法实现对两张图像的匹配
时间: 2023-11-13 16:02:30 浏览: 106
在C++中使用OpenCV库实现SURF算法进行图像匹配的步骤如下:
1. 导入OpenCV库:
```cpp
#include <opencv2/opencv.hpp>
```
2. 加载图像:
```cpp
cv::Mat image1 = cv::imread("image1.jpg", cv::IMREAD_GRAYSCALE);
cv::Mat image2 = cv::imread("image2.jpg", cv::IMREAD_GRAYSCALE);
```
3. 初始化SURF对象和关键点向量:
```cpp
cv::Ptr<cv::xfeatures2d::SURF> surf = cv::xfeatures2d::SURF::create();
std::vector<cv::KeyPoint> keypoints1, keypoints2;
cv::Mat descriptors1, descriptors2;
```
4. 检测关键点和计算描述符:
```cpp
surf->detectAndCompute(image1, cv::noArray(), keypoints1, descriptors1);
surf->detectAndCompute(image2, cv::noArray(), keypoints2, descriptors2);
```
5. 匹配关键点:
```cpp
cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create(cv::DescriptorMatcher::FLANNBASED);
std::vector<cv::DMatch> matches;
matcher->match(descriptors1, descriptors2, matches);
```
6. 选择最佳匹配:
```cpp
double max_dist = 0, min_dist = 100;
for (int i = 0; i < descriptors1.rows; i++) {
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
std::vector<cv::DMatch> good_matches;
for (int i = 0; i < descriptors1.rows; i++) {
if (matches[i].distance <= std::max(2 * min_dist, 0.02)) {
good_matches.push_back(matches[i]);
}
}
```
7. 绘制匹配结果:
```cpp
cv::Mat match_result;
cv::drawMatches(image1, keypoints1, image2, keypoints2, good_matches, match_result);
cv::imshow("Matches", match_result);
cv::waitKey(0);
```
这些步骤将加载两张图像,检测关键点和计算描述符,进行关键点匹配,选择最佳匹配,并最后通过绘制来可视化匹配结果。请确保已经安装和配置好OpenCV库,并将图像的路径替换为实际的图像路径。
阅读全文