基于DSP28335写一个MPPT算法实现最大功率追踪

时间: 2023-07-25 21:22:31 浏览: 73
好的,基于DSP28335实现MPPT算法实现最大功率追踪的步骤如下: 1. 确定PV电池板的特性曲线:PV电池板的特性曲线反映出在不同的电压下,电池板的输出功率变化。一般来说,PV电池板的特性曲线是一个倒U型曲线,最高点就是最大功率点(MPP)。 2. 采集PV电池板的电压和电流:通过ADC采集PV电池板输出的电压和电流。 3. 计算PV电池板的输出功率:根据PV电池板的电压和电流,计算出PV电池板的输出功率。 4. 初始化MPPT算法:根据实际情况,选择一种合适的MPPT算法,并进行初始化。 5. 实时调整PWM占空比:根据MPPT算法的输出结果,实时调整PWM占空比,使得PV电池板的工作点逐步向MPP移动。 6. 循环执行MPPT算法:不断循环执行MPPT算法,直到PV电池板的工作点达到MPP。 常用的MPPT算法有: - Perturb and Observe (P&O)法:该算法通过不断扰动电压值,观察输出功率变化趋势,从而确定MPP。 - Incremental Conductance (INC)法:该算法通过计算瞬时斜率,判断当前工作点是在MPP之左还是右,并相应调整电压值。 - Fractional Open Circuit Voltage (FOCV)法:该算法通过测量PV电池板的开路电压,从而确定MPP。 - Hill Climbing (HC)法:该算法通过比较不同工作点的功率大小,从而确定MPP。 以上就是基于DSP28335实现MPPT算法实现最大功率追踪的基本步骤和常用算法介绍。
相关问题

基于DSP28335写一个MPPT算法实现最大功率输出

好的,基于DSP28335写一个MPPT算法实现最大功率输出,主要的步骤如下: 1. 读取太阳能电池板的电压和电流值,并计算出当前的功率值。 2. 根据当前的电压和电流值,计算出太阳能电池板的内阻。 3. 根据当前的内阻值,计算出太阳能电池板的最大功率点。 4. 根据当前的功率值和最大功率点的差值,调整太阳能电池板的工作点,使得功率输出最大。 5. 循环执行上述步骤,实现最大功率输出。 具体代码实现可以参考以下步骤: ```C // 定义变量 float voltage, current, power; float max_power = 0; float max_voltage = 0; float max_current = 0; float internal_resistance = 0; float delta_power = 0; float delta_voltage = 0; float delta_current = 0; float duty_cycle = 0; float pwm_frequency = 10000; float pwm_deadtime = 0.001; float pwm_period = 1 / pwm_frequency; float pwm_on_time = 0; float pwm_off_time = 0; // 读取电压和电流值 voltage = read_voltage(); current = read_current(); // 计算当前功率值 power = voltage * current; // 计算内阻值 internal_resistance = voltage / (current + 0.0001); // 计算最大功率点 max_voltage = internal_resistance * (sqr(1.5) / 4.5); max_current = 1.5 / (2 * internal_resistance); // 计算差值 delta_power = max_power - power; delta_voltage = max_voltage - voltage; delta_current = max_current - current; // 调整工作点 if (delta_power > 0) { // 降低电压 duty_cycle = (voltage - delta_voltage) / pwm_period; } else { // 提高电压 duty_cycle = (voltage + delta_voltage) / pwm_period; } // 计算PWM占空比 pwm_on_time = duty_cycle * pwm_period; pwm_off_time = pwm_period - pwm_on_time; // 发送PWM信号 send_pwm_signal(pwm_on_time, pwm_off_time, pwm_deadtime); ``` 以上代码仅作为示例,实际实现需要根据具体情况进行调整。

基于DSP28335写一个MPPT扰动法稳压程序

MPPT扰动法是一种常用的太阳能电池最大功率点跟踪算法。基于DSP28335的MPPT扰动法稳压程序如下: 1. 采集太阳能电池输出电压和电流信号,通过模拟转换器将信号转换为数字信号。 2. 通过DSP28335内置的ADC模块获取信号,并且进行数字信号处理,计算太阳能电池的实时输出功率。 3. 设置一个初始电压值,假设为V0,然后对太阳能电池进行扰动,使电压增加一个极小的量,假设为dV,然后重新计算太阳能电池的输出功率P1。 4. 比较P1和实时输出功率P0,如果P1大于P0,则继续增加电压,重复步骤3;如果P1小于P0,则减小电压,重复步骤3。 5. 在整个过程中,需要实时监测太阳能电池的输出电压、电流和功率,通过DSP28335进行数字信号处理,实现MPPT扰动法稳压控制。 下面是一个简单的DSP28335 MPPT扰动法稳压程序的示例代码: ```c float Vpv,Ipv,Ppv,Vset,Verr,dV=0.01; float Kp=0.1,Ki=0.1; float Iset=5.0,Ierr,Integ=0.0; float V0=0.0,P0=0.0,P1=0.0; while(1){ Vpv=ADC_GetValue(0); //获取太阳能电池输出电压 Ipv=ADC_GetValue(1); //获取太阳能电池输出电流 Ppv=Vpv*Ipv; //计算太阳能电池实时输出功率 P1=(V0+dV)*(Ipv+Ki*Ierr); //计算扰动后的输出功率 Verr=Vset-Vpv; //计算电压误差 Ierr=Iset-Ipv; //计算电流误差 Integ=Integ+Kp*Verr; //积分项 V0=V0+Integ; //计算下一时刻的电压 if(P1>P0){ V0=V0+dV; }else{ V0=V0-dV; } P0=Ppv; //更新输出功率 PWM_SetDuty(V0); //控制PWM占空比,调整输出电压 delay(10); //延时 } ``` 需要注意的是,MPPT扰动法稳压控制需要进行参数调整和优化,以保证最大功率点跟踪的精度和稳定性。

相关推荐

最新推荐

recommend-type

太阳能电池板MPPT算法的实用指南

太阳能电池板MPPT算法实用,基于 microchip设计方案。
recommend-type

一种改进型变步长MPPT算法

针对固定步长比较法的跟踪速度和精度不够理想的特点,提出一种新的变步长扰动观测法来跟踪光伏电池的最大功率点。依据光伏电池的P-U曲线特性,在最大功率点两侧采用不同的变步长控制策略。在左侧,采用较大的步长...
recommend-type

光伏发电系统最大功率点追踪技术分析.docx

新能源三级项,光伏最大功率点追踪MPPT技术,MATLAB/simulink仿真
recommend-type

基于模糊PID 控制的最大功率点跟踪技术研究

在全新的太阳能电池数学物理模型基础上 对最大功率点跟踪 MPPT 技术进行了研究 针对扰动观察法后期容易出现的功率振荡现象 将模糊PID 控制用于跟踪最大功率点 并在MATLAB 上搭建仿真电路 通过比较这两种方法的仿真...
recommend-type

基于改进电导增量法MPPT控制仿真研究

开发了可以模拟任意光照强度、环境温度和电池参数的光伏电池通用仿真模型,在基于改进电导增量法的MPPT控制方法的基础上搭建了独立光伏系统,并在环境因素和负载变化的不同条件下进行了仿真,检验了最大功率跟踪控制...
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

def ObjFun(x,y,beta): # 目标函数 """ Logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: loss value """ n = x.shape[0] p = x.shape[1] pred = 1 / (1 + np.exp(-np.dot(x, beta))) pred = np.clip(pred, 1e-15, 1 - 1e-15) # 将预测值限制在一个很小的区间内 ObjVal = -np.sum(y * np.log(pred) + (1 - y) * np.log(1 - pred)) / n return ObjVal

好的,根据上面的目标函数,我们可以推导出其对应的梯度向量函数,如下所示: def gradient(x, y, beta): """ Compute gradient of the logistic regression loss function :param beta: model parameter vector :param x: feature matrix :param y: label vector :return: gradient vector """ n = x.shape[0] pred = 1 /
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。