import cv2 import numpy as np def nothing(x): # 回调函数 pass img = np.zeros((300, 512, 3), np.uint8) cv2.namedWindow('image') cv2.createTrackbar('R', 'image', 0, 255, nothing) cv2.createTrackbar('G', 'image', 0, 255, nothing) cv2.createTrackbar('B', 'image', 0, 255, nothing) switch = '0:OFF\n1:ON' cv2.createTrackbar(switch, 'image', 0, 1, nothing) while (1): cv2.imshow('image', img) k = cv2.waitKey(1) if k == ord('q'): break r = cv2.getTrackbarPos('R', 'image') g = cv2.getTrackbarPos('G', 'image') b = cv2.getTrackbarPos('B', 'image') s = cv2.getTrackbarPos(switch, 'image') if s == 0: img[:] = 0 else: img[:] = [b, g, r] cv2.destroyAllWindows()
时间: 2024-01-03 16:03:45 浏览: 303
这段代码是一个使用OpenCV库在窗口中创建一个可调节RGB颜色的图像。通过创建三个滑动条来调节红、绿、蓝三个通道的值,并且可以通过一个开关来控制图像的显示与隐藏。
其中,`cv2.createTrackbar()`函数用于创建滑动条,第一个参数是滑动条的名称,第二个参数是它所属的窗口名称,第三个参数是滑动条的初始值,第四个参数是滑动条的最大值,第五个参数是回调函数。回调函数`nothing()`可以为空,它只是一个占位符。
程序的主循环`while(1)`中,通过`cv2.getTrackbarPos()`函数来获取滑动条的当前值,并根据这些值来更新图像。如果开关的值为0,图像将被清空为黑色;否则,图像将被更新为对应的颜色。
按下键盘上的'q'键将退出程序,最后通过`cv2.destroyAllWindows()`函数来关闭窗口。
这段代码可以用来演示和测试OpenCV中滑动条的使用。
相关问题
#encoding=utf8 import numpy as np #计算图像的直方图 def histgram(img): #输入:img,待统计直方图的图像 #输出:统计出来的直方图,hist #提示:img为灰度图, img.shape[0]为图的高, img.shape[1]为图的宽 height = img.shape[0] width = img.shape[1] hist = np.zeros([256], np.float32) #请填写代码 begin #请填写代码 end return hist if __name__ == '__main__': pass
这段代码实现了计算图像的直方图。具体来说,输入为一张灰度图像,输出为统计出来的直方图,即每个灰度值出现的次数。代码中使用了numpy库中的np.zeros函数创建了一个长度为256的全0数组作为直方图。下面是完整的代码及注释:
```python
#encoding=utf8
import numpy as np
#计算图像的直方图
def histgram(img):
#输入:img,待统计直方图的图像
#输出:统计出来的直方图,hist
#提示:img为灰度图, img.shape[0]为图的高, img.shape[1]为图的宽
height = img.shape[0]
width = img.shape[1]
hist = np.zeros([256], np.float32) #创建长度为256的全0数组作为直方图
#遍历每个像素,统计直方图
for i in range(height):
for j in range(width):
gray = int(img[i,j])
hist[gray] += 1
return hist
if __name__ == '__main__':
pass
```
在遍历每个像素时,将像素的灰度值转换为整数类型并作为直方图数组的下标,然后将对应的直方图元素加1。最后返回统计出来的直方图数组。
优化:import numpy as np import scipy.signal as signal import scipy.io.wavfile as wavfile import pywt import matplotlib.pyplot as plt def wiener_filter(x, fs, cutoff): # 维纳滤波函数 N = len(x) freqs, Pxx = signal.periodogram(x, fs=fs) H = np.zeros(N) H[freqs <= cutoff] = 1 Pxx_smooth = np.maximum(Pxx, np.max(Pxx) * 1e-6) H_smooth = np.maximum(H, np.max(H) * 1e-6) G = H_smooth / (H_smooth + 1 / Pxx_smooth) y = np.real(np.fft.ifft(np.fft.fft(x) * G)) return y def kalman_filter(x): # 卡尔曼滤波函数 Q = np.diag([0.01, 1]) R = np.diag([1, 0.1]) A = np.array([[1, 1], [0, 1]]) H = np.array([[1, 0], [0, 1]]) x_hat = np.zeros((2, len(x))) P = np.zeros((2, 2, len(x))) x_hat[:, 0] = np.array([x[0], 0]) P[:, :, 0] = np.eye(2) for k in range(1, len(x)): x_hat[:, k] = np.dot(A, x_hat[:, k-1]) P[:, :, k] = np.dot(np.dot(A, P[:, :, k-1]), A.T) + Q K = np.dot(np.dot(P[:, :, k], H.T), np.linalg.inv(np.dot(np.dot(H, P[:, :, k]), H.T) + R)) x_hat[:, k] += np.dot(K, x[k] - np.dot(H, x_hat[:, k])) P[:, :, k] = np.dot(np.eye(2) - np.dot(K, H), P[:, :, k]) y = x_hat[0, :] return y # 读取含有噪声的语音信号 rate, data = wavfile.read("shengyin.wav") data = data.astype(float) / 32767.0 # 维纳滤波 y_wiener = wiener_filter(data, fs=rate, cutoff=1000) # 卡尔曼滤波 y_kalman = kalman_filter(data) # 保存滤波后的信号到文件中 wavfile.write("wiener_filtered.wav", rate, np.int32(y_wiener * 32767.0)) wavfile.write("kalman_filtered.wav", rate, np.int32(y_kalman * 32767.0))
这段代码的优化可以从以下几个方面入手:
1. 合理使用numpy中的函数,避免使用Python内置的循环语句,以提高运行效率。
2. 在函数中进行参数检查,以确保参数的类型和取值范围符合要求,避免不必要的错误和异常。
3. 对于频繁使用的函数,可以将其封装成单独的函数,以提高代码的可读性和重用性。
4. 可以使用并行化的技术来提高运行效率,例如多线程或者异步编程。
下面是对代码的优化改进:
import numpy as np
import scipy.signal as signal
import scipy.io.wavfile as wavfile
import pywt
import matplotlib.pyplot as plt
from typing import Tuple
def periodogram(x: np.ndarray, fs: int) -> Tuple[np.ndarray, np.ndarray]:
freqs, Pxx = signal.periodogram(x, fs=fs)
return freqs, Pxx
def wiener_filter(x: np.ndarray, fs: int, cutoff: float) -> np.ndarray:
# 维纳滤波函数
N = len(x)
freqs, Pxx = periodogram(x, fs=fs)
H = np.zeros(N)
H[freqs <= cutoff] = 1
Pxx_smooth = np.maximum(Pxx, np.max(Pxx) * 1e-6)
H_smooth = np.maximum(H, np.max(H) * 1e-6)
G = H_smooth / (H_smooth + 1 / Pxx_smooth)
y = np.real(np.fft.ifft(np.fft.fft(x) * G))
return y
def kalman_filter(x: np.ndarray) -> np.ndarray:
# 卡尔曼滤波函数
Q = np.diag([0.01, 1])
R = np.diag([1, 0.1])
A = np.array([[1, 1], [0, 1]])
H = np.array([[1, 0], [0, 1]])
x_hat = np.zeros((2, len(x)))
P = np.zeros((2, 2, len(x)))
x_hat[:, 0] = np.array([x[0], 0])
P[:, :, 0] = np.eye(2)
for k in range(1, len(x)):
x_hat[:, k] = np.dot(A, x_hat[:, k-1])
P[:, :, k] = np.dot(np.dot(A, P[:, :, k-1]), A.T) + Q
K = np.dot(np.dot(P[:, :, k], H.T), np.linalg.inv(np.dot(np.dot(H, P[:, :, k]), H.T) + R))
x_hat[:, k] += np.dot(K, x[k] - np.dot(H, x_hat[:, k]))
P[:, :, k] = np.dot(np.eye(2) - np.dot(K, H), P[:, :, k])
y = x_hat[0, :]
return y
def filter_wav_file(in_file: str, out_file: str, filter_func) -> None:
# 读取含有噪声的语音信号
rate, data = wavfile.read(in_file)
data = data.astype(float) / 32767.0
# 进行滤波
y_filtered = filter_func(data)
# 保存滤波后的信号到文件中
wavfile.write(out_file, rate, np.int32(y_filtered * 32767.0))
# 维纳滤波
filter_wav_file("shengyin.wav", "wiener_filtered.wav", lambda x: wiener_filter(x, fs=rate, cutoff=1000))
# 卡尔曼滤波
filter_wav_file("shengyin.wav", "kalman_filtered.wav", kalman_filter)
阅读全文