python实现admm算法求解稀疏矩阵
时间: 2023-07-26 11:13:32 浏览: 308
ADMM(Alternating Direction Method of Multipliers)算法是求解稀疏矩阵的一种常用方法。Python可以使用NumPy和SciPy库来实现ADMM算法求解稀疏矩阵。
以下是一个简单的Python代码示例:
```python
import numpy as np
from scipy.sparse import csc_matrix
from scipy.sparse.linalg import inv as sparse_inv
def admm(A, b, lambd, rho, max_iter):
m, n = A.shape
x = np.zeros((n, 1))
z = np.zeros((n, 1))
u = np.zeros((n, 1))
A_t = A.transpose()
AtA = A_t.dot(A)
I = np.identity(n)
for i in range(max_iter):
x = sparse_inv(AtA + rho * I).dot(A_t.dot(b) + rho * z - u)
z_old = np.copy(z)
z = soft_threshold(x + u / rho, lambd / rho)
u = u + rho * (x - z)
return z
def soft_threshold(x, lambd):
return np.maximum(0, x - lambd) - np.maximum(0, -x - lambd)
# 测试代码
A = csc_matrix(np.random.rand(10, 10))
b = np.random.rand(10, 1)
lambd = 0.1
rho = 1
max_iter = 100
x = admm(A, b, lambd, rho, max_iter)
print(x)
```
在上面的代码中,admm函数是求解稀疏矩阵的主函数,输入参数包括系数矩阵A、常数向量b、正则化参数lambd、ADMM参数rho和最大迭代次数max_iter。该函数使用soft_threshold函数来实现稀疏性约束。soft_threshold函数实现了软阈值函数。在测试代码中,我们使用随机生成的系数矩阵A和常数向量b来测试admm函数的输出结果。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)