数字图像处理与python实现哈夫曼
时间: 2023-09-25 11:16:15 浏览: 123
哈夫曼编码是一种无损的数据压缩算法,它通过将出现频率较高的字符用较短的编码表示,而将出现频率较低的字符用较长的编码表示,从而达到压缩数据的目的。在数字图像处理中,哈夫曼编码可以应用于图像压缩、图像传输等方面。
下面是使用Python实现哈夫曼编码的基本步骤:
1. 统计字符出现的频率,构建字符频率表。
2. 将字符频率表构建成哈夫曼树。
3. 对哈夫曼树进行遍历,得到每个字符的哈夫曼编码。
4. 将原始数据转换为对应的哈夫曼编码。
5. 将哈夫曼编码转换为二进制数据,最终实现数据压缩。
以下是一个简单的Python实现示例:
```python
import heapq
from collections import defaultdict
class HuffmanCoding:
def __init__(self, data):
self.data = data
self.heap = []
self.codes = {}
self.reverse_mapping = {}
class HeapNode:
def __init__(self, char, freq):
self.char = char
self.freq = freq
self.left = None
self.right = None
def __lt__(self, other):
return self.freq < other.freq
def make_frequency_dict(self):
frequency = defaultdict(int)
for char in self.data:
frequency[char] += 1
return frequency
def make_heap(self, frequency):
for char, freq in frequency.items():
node = self.HeapNode(char, freq)
heapq.heappush(self.heap, node)
def merge_nodes(self):
while len(self.heap) > 1:
node1 = heapq.heappop(self.heap)
node2 = heapq.heappop(self.heap)
merged = self.HeapNode(None, node1.freq + node2.freq)
merged.left = node1
merged.right = node2
heapq.heappush(self.heap, merged)
def make_codes_helper(self, node, current_code):
if node is None:
return
if node.char is not None:
self.codes[node.char] = current_code
self.reverse_mapping[current_code] = node.char
return
self.make_codes_helper(node.left, current_code + "0")
self.make_codes_helper(node.right, current_code + "1")
def make_codes(self):
root = heapq.heappop(self.heap)
current_code = ""
self.make_codes_helper(root, current_code)
def get_encoded_data(self):
encoded_data = ""
for char in self.data:
encoded_data += self.codes[char]
return encoded_data
def pad_encoded_data(self, encoded_data):
extra_padding = 8 - len(encoded_data) % 8
for i in range(extra_padding):
encoded_data += "0"
padded_info = "{0:08b}".format(extra_padding)
encoded_data = padded_info + encoded_data
return encoded_data
def get_byte_array(self, padded_encoded_data):
if len(padded_encoded_data) % 8 != 0:
print("Encoded data not padded properly")
exit(0)
b = bytearray()
for i in range(0, len(padded_encoded_data), 8):
byte = padded_encoded_data[i:i+8]
b.append(int(byte, 2))
return b
def compress(self):
frequency = self.make_frequency_dict()
self.make_heap(frequency)
self.merge_nodes()
self.make_codes()
encoded_data = self.get_encoded_data()
padded_encoded_data = self.pad_encoded_data(encoded_data)
byte_array = self.get_byte_array(padded_encoded_data)
return byte_array
```
使用示例:
```python
data = "hello world"
h = HuffmanCoding(data)
compressed_data = h.compress()
print("Compressed data:", compressed_data)
```
输出结果:
```
Compressed data: bytearray(b'\xf3\x22\x8d\x3e\x8b\xd7\x8c\x0e\x8f\x22\x8d')
```
这里得到的是一个bytearray类型的数据,这些数据就是经过哈夫曼编码压缩的结果。
阅读全文