python遗传算法实现tsp问题
时间: 2023-12-22 22:26:59 浏览: 155
以下是Python实现TSP问题的遗传算法的步骤:
1.定义城市坐标和距离矩阵
```python
import numpy as np
# 城市坐标
city_pos = np.array([[60, 200], [180, 200], [80, 180], [140, 180], [20, 160], [100, 160], [200, 160], [140, 140], [40, 120], [100, 120], [180, 100], [60, 80], [120, 80], [180, 60], [20, 40], [100, 40], [200, 40], [20, 20], [60, 20], [160, 20]])
# 计算距离矩阵
def calc_dist_matrix(city_pos):
n = city_pos.shape[0]
dist_matrix = np.zeros((n, n))
for i in range(n):
for j in range(i+1, n):
dist_matrix[i][j] = dist_matrix[j][i] = np.linalg.norm(city_pos[i] - city_pos[j])
return dist_matrix
dist_matrix = calc_dist_matrix(city_pos)
```
2.定义遗传算法的参数
```python
POP_SIZE = 50 # 种群大小
CROSS_RATE = 0.8 # 交叉概率
MUTATION_RATE = 0.02 # 变异概率
N_GENERATIONS = 500 # 迭代次数
```
3.定义遗传算法的主要函数
```python
def select(pop, fitness):
idx = np.random.choice(np.arange(POP_SIZE), size=POP_SIZE, replace=True, p=fitness/fitness.sum())
return pop[idx]
def crossover(parent, pop):
if np.random.rand() < CROSS_RATE:
i_ = np.random.randint(0, POP_SIZE, size=1)
cross_points = np.random.randint(0, 2, size=len(parent)).astype(np.bool)
parent[cross_points] = pop[i_, cross_points]
return parent
def mutate(child):
for point in range(len(child)):
if np.random.rand() < MUTATION_RATE:
swap_point = np.random.randint(0, len(child))
child[point], child[swap_point] = child[swap_point], child[point]
return child
def translateDNA(pop):
# 将二进制编码转换为路径
paths = np.zeros((len(pop), dist_matrix.shape[0]), dtype=np.int)
for i, dna in enumerate(pop):
paths[i] = np.argsort(np.argsort(dna))
return paths
def get_fitness(paths):
# 计算路径的总距离
distances = np.zeros(len(paths))
for i, path in enumerate(paths):
distances[i] = dist_matrix[path[-1]][path[0]]
for j in range(1, len(path)):
distances[i] += dist_matrix[path[j-1]][path[j]]
fitness = np.exp(distances.max() - distances)
return fitness / fitness.sum()
def evolve(pop):
paths = translateDNA(pop)
fitness = get_fitness(paths)
pop = select(pop, fitness)
pop_copy = pop.copy()
for parent in pop:
child = crossover(parent, pop_copy)
child = mutate(child)
parent[:] = child
return pop
```
4.定义主函数并运行遗传算法
```python
pop = np.random.randint(0, 2, size=(POP_SIZE, dist_matrix.shape[0]))
for i in range(N_GENERATIONS):
pop = evolve(pop)
best_idx = np.argmax(get_fitness(translateDNA(pop)))
best_path = translateDNA(pop)[best_idx]
best_distance = get_fitness(translateDNA(pop))[best_idx]
print('最短路径:', best_path)
print('最短距离:', best_distance)
```
阅读全文