transformer模型实战
时间: 2024-01-29 16:10:48 浏览: 104
Transformer模型实战可以参考哈佛大学2018年4月的一个实现版本。该实现版本详细解释了Transformer模型的整体结构和细节,并附上了模型局部图和类的依赖关系图,使得解释更加全面和详细。在Transformer模型中,Self-Attention在Encoder和Decoder内部都有应用。
相关问题
使用pytorch实现transformer模型实战案例
好的,下面提供一个使用PyTorch实现Transformer模型的实战案例。
首先,我们需要导入必要的库和模块:
```python
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
```
接着,我们定义一些超参数:
```python
d_model = 512 # 模型维度
n_layers = 6 # 层数
n_heads = 8 # 头数
dropout = 0.1 # Dropout概率
```
定义位置编码函数:
```python
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False)
return self.dropout(x)
```
定义多头自注意力机制模块:
```python
class MultiHeadedAttention(nn.Module):
def __init__(self, n_heads, d_model, dropout=0.1):
super(MultiHeadedAttention, self).__init__()
assert d_model % n_heads == 0
self.d_k = d_model // n_heads
self.n_heads = n_heads
self.linears = nn.ModuleList([nn.Linear(d_model, d_model) for _ in range(4)])
self.dropout = nn.Dropout(p=dropout)
def attention(self, q, k, v, mask=None, dropout=None):
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, v), p_attn
def forward(self, query, key, value, mask=None):
if mask is not None:
mask = mask.unsqueeze(1)
nbatches = query.size(0)
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = [l(x).view(nbatches, -1, self.n_heads, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
# 2) Apply attention on all the projected vectors in batch.
x, attn = self.attention(query, key, value, mask=mask, dropout=self.dropout)
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.n_heads * self.d_k)
return self.linears[-1](x), attn
```
定义前馈神经网络模块:
```python
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
```
定义一个Transformer层模块:
```python
class TransformerLayer(nn.Module):
def __init__(self, d_model, n_heads, dropout=0.1):
super(TransformerLayer, self).__init__()
self.self_attn = MultiHeadedAttention(n_heads, d_model, dropout=dropout)
self.feed_forward = PositionwiseFeedForward(d_model, d_model*4, dropout=dropout)
self.sublayer = nn.ModuleList([SublayerConnection(d_model, dropout=dropout) for _ in range(2)])
self.d_model = d_model
def forward(self, x, mask):
x, _ = self.self_attn(x, x, x, mask=mask)
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask=mask))
x = self.sublayer[1](x, self.feed_forward)
return x
```
定义一个包含若干个Transformer层的Transformer模块:
```python
class Transformer(nn.Module):
def __init__(self, n_layers, d_model, n_heads, dropout=0.1):
super(Transformer, self).__init__()
self.layers = nn.ModuleList([TransformerLayer(d_model, n_heads, dropout=dropout) for _ in range(n_layers)])
self.norm = nn.LayerNorm(d_model)
def forward(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
```
定义一个SublayerConnection模块,用于连接子层:
```python
class SublayerConnection(nn.Module):
def __init__(self, size, dropout=0.1):
super(SublayerConnection, self).__init__()
self.norm = nn.LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
return x + self.dropout(sublayer(self.norm(x)))
```
最后,我们可以使用这些模块来构建一个Transformer模型:
```python
class TransformerModel(nn.Module):
def __init__(self, vocab_size, d_model, n_layers, n_heads, dropout=0.1):
super(TransformerModel, self).__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoder = PositionalEncoding(d_model, dropout=dropout)
self.transformer = Transformer(n_layers, d_model, n_heads, dropout=dropout)
self.decoder = nn.Linear(d_model, vocab_size)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embedding.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src, mask):
src = self.embedding(src)
src = self.pos_encoder(src)
output = self.transformer(src, mask)
output = self.decoder(output)
return output
```
以上就是使用PyTorch实现Transformer模型的实战案例。可以根据具体的需求进行修改和扩展。
帮我写一个transformer模型的实战案例代码,使用pytorch框架
好的,下面是一个基于PyTorch框架实现的Transformer模型的实战案例代码,以机器翻译为例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
# 定义超参数
MAX_LENGTH = 10 # 最大句子长度
BATCH_SIZE = 64 # 批量大小
EMBEDDING_DIM = 256 # 词向量维度
HIDDEN_DIM = 512 # 隐藏层维度
N_LAYERS = 6 # Transformer层数
N_HEADS = 8 # 注意力头数
DROPOUT = 0.1 # Dropout概率
LEARNING_RATE = 0.0005 # 学习率
N_EPOCHS = 10 # 训练轮数
# 定义数据集
class TranslationDataset(Dataset):
def __init__(self, path):
self.pairs = []
with open(path, 'r', encoding='utf-8') as f:
for line in f:
src, tgt = line.strip().split('\t')
self.pairs.append((src, tgt))
def __len__(self):
return len(self.pairs)
def __getitem__(self, index):
src, tgt = self.pairs[index]
src_tokens = [int(x) for x in src.split()]
tgt_tokens = [int(x) for x in tgt.split()]
src_len = len(src_tokens)
tgt_len = len(tgt_tokens)
src_padding = [0] * (MAX_LENGTH - src_len)
tgt_padding = [0] * (MAX_LENGTH - tgt_len)
src_tokens += src_padding
tgt_tokens += tgt_padding
return (torch.LongTensor(src_tokens), torch.LongTensor(tgt_tokens))
# 定义Transformer模型
class Transformer(nn.Module):
def __init__(self, input_dim, output_dim, embedding_dim, hidden_dim, n_layers, n_heads, dropout):
super().__init__()
self.input_embedding = nn.Embedding(input_dim, embedding_dim)
self.output_embedding = nn.Embedding(output_dim, embedding_dim)
self.encoder = Encoder(embedding_dim, hidden_dim, n_layers, n_heads, dropout)
self.decoder = Decoder(embedding_dim, hidden_dim, n_layers, n_heads, dropout)
self.output_projection = nn.Linear(hidden_dim, output_dim)
def forward(self, src, tgt):
src_embedded = self.input_embedding(src)
tgt_embedded = self.output_embedding(tgt)
encoder_output, encoder_attention = self.encoder(src_embedded)
decoder_output, decoder_attention = self.decoder(tgt_embedded, encoder_output)
output = self.output_projection(decoder_output)
return output, encoder_attention, decoder_attention
class Encoder(nn.Module):
def __init__(self, embedding_dim, hidden_dim, n_layers, n_heads, dropout):
super().__init__()
self.layers = nn.ModuleList([EncoderLayer(embedding_dim, hidden_dim, n_heads, dropout) for _ in range(n_layers)])
self.dropout = nn.Dropout(dropout)
def forward(self, x):
attention_weights = []
for layer in self.layers:
x, attention = layer(x)
attention_weights.append(attention)
return x, torch.stack(attention_weights)
class EncoderLayer(nn.Module):
def __init__(self, embedding_dim, hidden_dim, n_heads, dropout):
super().__init__()
self.self_attention = MultiHeadAttention(embedding_dim, n_heads)
self.layer_norm1 = nn.LayerNorm(embedding_dim)
self.positionwise_feedforward = PositionwiseFeedforward(embedding_dim, hidden_dim, dropout)
self.layer_norm2 = nn.LayerNorm(embedding_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
x, attention = self.self_attention(x, x, x)
x = self.layer_norm1(residual + self.dropout(x))
residual = x
x = self.positionwise_feedforward(x)
x = self.layer_norm2(residual + self.dropout(x))
return x, attention
class Decoder(nn.Module):
def __init__(self, embedding_dim, hidden_dim, n_layers, n_heads, dropout):
super().__init__()
self.layers = nn.ModuleList([DecoderLayer(embedding_dim, hidden_dim, n_heads, dropout) for _ in range(n_layers)])
self.dropout = nn.Dropout(dropout)
def forward(self, x, encoder_output):
attention_weights = []
for layer in self.layers:
x, attention = layer(x, encoder_output)
attention_weights.append(attention)
return x, torch.stack(attention_weights)
class DecoderLayer(nn.Module):
def __init__(self, embedding_dim, hidden_dim, n_heads, dropout):
super().__init__()
self.self_attention = MultiHeadAttention(embedding_dim, n_heads)
self.layer_norm1 = nn.LayerNorm(embedding_dim)
self.encoder_attention = MultiHeadAttention(embedding_dim, n_heads)
self.layer_norm2 = nn.LayerNorm(embedding_dim)
self.positionwise_feedforward = PositionwiseFeedforward(embedding_dim, hidden_dim, dropout)
self.layer_norm3 = nn.LayerNorm(embedding_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x, encoder_output):
residual = x
x, self_attention = self.self_attention(x, x, x)
x = self.layer_norm1(residual + self.dropout(x))
residual = x
x, encoder_attention = self.encoder_attention(x, encoder_output, encoder_output)
x = self.layer_norm2(residual + self.dropout(x))
residual = x
x = self.positionwise_feedforward(x)
x = self.layer_norm3(residual + self.dropout(x))
return x, encoder_attention
class MultiHeadAttention(nn.Module):
def __init__(self, embedding_dim, n_heads):
super().__init__()
self.embedding_dim = embedding_dim
self.n_heads = n_heads
self.head_dim = embedding_dim // n_heads
self.q_linear = nn.Linear(embedding_dim, embedding_dim)
self.k_linear = nn.Linear(embedding_dim, embedding_dim)
self.v_linear = nn.Linear(embedding_dim, embedding_dim)
self.out_linear = nn.Linear(embedding_dim, embedding_dim)
def forward(self, query, key, value):
batch_size = query.size(0)
Q = self.q_linear(query).view(batch_size, -1, self.n_heads, self.head_dim).transpose(1, 2)
K = self.k_linear(key).view(batch_size, -1, self.n_heads, self.head_dim).transpose(1, 2)
V = self.v_linear(value).view(batch_size, -1, self.n_heads, self.head_dim).transpose(1, 2)
attention_weights = torch.matmul(Q, K.transpose(-2, -1)) / (self.head_dim ** 0.5)
attention_weights = F.softmax(attention_weights, dim=-1)
output = torch.matmul(self.dropout(attention_weights), V)
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.embedding_dim)
output = self.out_linear(output)
return output, attention_weights
class PositionwiseFeedforward(nn.Module):
def __init__(self, embedding_dim, hidden_dim, dropout):
super().__init__()
self.fc1 = nn.Linear(embedding_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, embedding_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = self.fc2(x)
return x
# 定义训练函数
def train(model, iterator, optimizer, criterion):
model.train()
epoch_loss = 0
for src, tgt in iterator:
optimizer.zero_grad()
output, _, _ = model(src, tgt[:, :-1])
output_dim = output.shape[-1]
output = output.contiguous().view(-1, output_dim)
tgt = tgt[:, 1:].contiguous().view(-1)
loss = criterion(output, tgt)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator)
# 定义评估函数
def evaluate(model, iterator, criterion):
model.eval()
epoch_loss = 0
with torch.no_grad():
for src, tgt in iterator:
output, _, _ = model(src, tgt[:, :-1])
output_dim = output.shape[-1]
output = output.contiguous().view(-1, output_dim)
tgt = tgt[:, 1:].contiguous().view(-1)
loss = criterion(output, tgt)
epoch_loss += loss.item()
return epoch_loss / len(iterator)
# 加载数据集
train_dataset = TranslationDataset('train.txt')
valid_dataset = TranslationDataset('valid.txt')
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(valid_dataset, batch_size=BATCH_SIZE)
# 初始化模型和优化器
model = Transformer(input_dim=10000, output_dim=10000, embedding_dim=EMBEDDING_DIM, hidden_dim=HIDDEN_DIM, n_layers=N_LAYERS, n_heads=N_HEADS, dropout=DROPOUT)
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
criterion = nn.CrossEntropyLoss(ignore_index=0)
# 训练模型
for epoch in range(N_EPOCHS):
train_loss = train(model, train_loader, optimizer, criterion)
valid_loss = evaluate(model, valid_loader, criterion)
print(f'Epoch: {epoch+1:02} | Train Loss: {train_loss:.3f} | Valid Loss: {valid_loss:.3f}')
```
上述代码实现了一个简单的机器翻译模型,使用了PyTorch框架和Transformer架构。具体而言,它使用了一个包含6个Encoder层和6个Decoder层的Transformer模型,其中每个层都包含了自注意力和多头注意力机制。该模型使用了Adam优化器和交叉熵损失函数进行训练。
阅读全文