不使用pyswarms库
时间: 2024-01-26 07:02:10 浏览: 98
好的,以下是一个使用纯Python实现PSO算法优化LSTM神经网络参数的代码示例:
```python
import numpy as np
import random
from keras.models import Sequential
from keras.layers import LSTM, Dense
# Define the LSTM model
def create_model(units, batch_size, learning_rate):
model = Sequential()
model.add(LSTM(units=units, batch_input_shape=(batch_size, X_train.shape[1], X_train.shape[2]), stateful=True))
model.add(Dense(1))
optimizer = keras.optimizers.Adam(lr=learning_rate)
model.compile(loss='mean_squared_error', optimizer=optimizer)
return model
# Define the fitness function to be optimized
def fitness_function(params):
units = params[0]
batch_size = params[1]
learning_rate = params[2]
model = create_model(units=units, batch_size=batch_size, learning_rate=learning_rate)
history = model.fit(X_train, y_train, epochs=10, batch_size=batch_size, verbose=0, shuffle=False)
loss = history.history['loss'][-1]
return loss
# Define the PSO optimizer
def PSO(fitness_function, n_particles, n_iterations, bounds):
# Initialize the particles with random positions and velocities
particles_position = np.zeros((n_particles, len(bounds)))
particles_velocity = np.zeros((n_particles, len(bounds)))
for i in range(n_particles):
for j in range(len(bounds)):
particles_position[i][j] = random.uniform(bounds[j][0], bounds[j][1])
particles_velocity[i][j] = random.uniform(-1, 1)
# Initialize the global best position and fitness
global_best_position = np.zeros(len(bounds))
global_best_fitness = np.inf
# Iterate over the specified number of iterations
for iteration in range(n_iterations):
# Evaluate the fitness of each particle and update the personal best position and fitness
for i in range(n_particles):
fitness = fitness_function(particles_position[i])
if fitness < personal_best_fitness[i]:
personal_best_position[i] = particles_position[i]
personal_best_fitness[i] = fitness
# Update the global best position and fitness
if fitness < global_best_fitness:
global_best_position = particles_position[i]
global_best_fitness = fitness
# Update the velocity and position of each particle
for i in range(n_particles):
for j in range(len(bounds)):
r1 = random.random()
r2 = random.random()
particles_velocity[i][j] = w * particles_velocity[i][j] + c1 * r1 * (personal_best_position[i][j] - particles_position[i][j]) + c2 * r2 * (global_best_position[j] - particles_position[i][j])
particles_position[i][j] = particles_position[i][j] + particles_velocity[i][j]
print('Iteration:', iteration, 'Best loss:', global_best_fitness, 'Best params:', global_best_position)
return global_best_position, global_best_fitness
# Set the search space for the PSO algorithm
bounds = [(10, 100), (16, 64), (0.0001, 0.1)]
# Define the PSO parameters
n_particles = 10
n_iterations = 50
w = 0.9
c1 = 0.5
c2 = 0.3
# Run the PSO optimizer to find the optimal parameters
best_params, best_fitness = PSO(fitness_function, n_particles, n_iterations, bounds)
# Train the LSTM model with the optimal parameters
model = create_model(units=int(best_params[0]), batch_size=int(best_params[1]), learning_rate=best_params[2])
history = model.fit(X_train, y_train, epochs=100, batch_size=int(best_params[1]), validation_data=(X_test, y_test), verbose=0, shuffle=False)
# Evaluate the LSTM model
loss = model.evaluate(X_test, y_test, batch_size=int(best_params[1]), verbose=0)
print('Test loss:', loss)
```
在这个示例中,我们定义了一个名为PSO的函数,它接收适应度函数、粒子数量、迭代次数和参数搜索范围作为输入,并返回最优参数和最小损失值。在PSO函数中,我们初始化了粒子的位置和速度,并迭代地更新它们的位置和速度,使用适应度函数计算每个粒子的适应度,并更新个人最优位置和全局最优位置。最后,我们使用找到的最优参数重新训练LSTM模型,并评估其在测试集上的表现。
阅读全文