郭炜编著《python程序设计基础及实践(慕课版)》

时间: 2023-09-02 17:03:04 浏览: 243
《Python程序设计基础及实践(慕课版)》是由郭炜编著的一本教材。本书主要面向初学者,旨在帮助读者掌握Python编程语言的基础知识和实践技能。 《Python程序设计基础及实践(慕课版)》全书共分为数个部分,内容包括Python的基本语法、常用数据类型和数据结构、条件和循环语句、函数、文件操作、异常处理等。每一章节设计了大量的例子和练习题,读者可以通过实践来巩固所学的知识。 该书注重代码实践,通过实际案例和项目来讲解Python编程的实际应用。通过慕课视频配套教学,读者可以更好地理解和掌握书中的知识点。本书的编写风格通俗易懂,适合初学者阅读。 《Python程序设计基础及实践(慕课版)》的特点在于注重实践和案例,通过大量的实例和练习来帮助读者巩固所学的知识。同时,该书还涵盖了Python编程的一些进阶内容,如Web开发、数据分析和人工智能等,读者可以根据自己的需求选择学习的方向。 总之,《Python程序设计基础及实践(慕课版)》是一本适合初学者学习Python的教材,通过案例和项目帮助读者实践所学的知识,并且涵盖了一些进阶内容,读者可以选择不同的方向深入学习。
相关问题

清华大学集成电路学院有哪些院士

清华大学集成电路学院是中国最早成立的集成电路学科和研究机构之一,拥有众多杰出的院士。以下是一些清华大学集成电路学院的院士: 1. 陈明:中国工程院院士,清华大学集成电路学院教授,主要研究领域包括集成***EDA技术等方面的研究。 3. 陈志强:中国工程院院士,清华大学集成电路学院教授,主要研究领域包括集成电路设计与测试、EDA技术等。 4. 高红霞:中国工程院院士,清华大学集成电路学院教授,主要从事集成电路设计与测试、EDA技术等方面的研究。 5. 郭炜:中国工程院院士,清华大学集成电路学院教授,主要研究领域包括集成电路设计与测试、EDA技术等。 6. 黄宇:中国工程院院士,清华大学集成电路学院教授,主要从事集成电路设计与测试、EDA技术等方面的研究。 7. 李培杰:中国工程院院士,清华大学集成电路学院教授,主要研究领域包括集成电路设计与测试、EDA技术等。 8. 刘洪海:中国工程院院士,清华大学集成电路学院教授,主要从事集成电路设计与测试、EDA技术等方面的研究。 9. 马少平:中国工程院院士,清华大学集成电路学院教授,主要研究领域包括集成电路设计与测试、EDA技术等。 10. 潘复生:中国工程院院士,清华大学集成电路学院教授,主要从事集成电路设计与测试、EDA技术等方面的研究。 以上是部分清华大学集成电路学院的院士,他们在集成电路领域做出了杰出的贡献,并对学院的发展起到了重要的推动作用。

#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<algorithm> using namespace std; int main() { int a,b,s=0,s1=0,i=0,na=0,nb=0; cin>>a>>b; if(a<=0) na=1,a*=-1; while(a!=0) { if(a%2!=0) s+=pow(2,a%2*i); a/=2; i++; } i=0; if(na==1) s*=-1; if(b<=0) nb=1,b*=-1; while(b!=0) { if(b%2!=0) s1+=pow(2,b%2*i); b/=2; i++; } if(nb==1) s1*=-1; cout<<s+s1;; return 0; }

这段代码是一个将两个十进制数转换为二进制数后相加的程序。 代码首先读取两个输入的十进制数 `a` 和 `b`。然后,通过循环将每个数转换为二进制形式并相加。在转换过程中,代码使用了取余操作符 `%` 来判断当前位的值,并使用了 `pow` 函数来计算对应的二进制位的权值(即 2 的幂)。最后,将转换后的二进制数加并输出结果。 需要注意的是,代码中使用了 `pow` 函数来进行幂运算,但是由于该函数返回的是一个浮点数,可能会引入精度问题。在处理整数运算时,可以考虑使用位运算和移位操作来进行二进制转换和相加,以提高效率和准确性。 此外,代码中还对输入的十进制数进行了符号处理,将其转换为对应的负数形式并在最后计算结果时进行相应的处理。 总体而言,这段代码是一个简单的实现二进制数相加的程序,但可能存在一些精度和效率问题,可以进行优化和改进。

相关推荐

#include <bits/stdc++.h> using namespace std; int mp[100][100]; int last[100]; int n = 22, m = 62; // 在[x1-x2, y1-y2]绘制ch void draw(int x1, int y1, int x2, int y2, char ch = '#'){ for(int i = x1; i <= x2; i++) for(int j = y1; j <= y2; j++) mp[i][j] = ch; } // 在[x1, y1]绘制ch void draw(int x1, int y1, char ch = '#'){ draw(x1, y1, x1, y1, ch); } // 以[x, y]为左上角绘制泥土 void drawland(int x, int y){ draw(x, y, x+8, y+13); for(int i = x+1; i < x+8; i+=2) draw(i, y+1, i, y+12, '.'); draw(x+1, y+4); draw(x+1, y+11); draw(x+3, y+3); draw(x+3, y+8); draw(x+5, y+6); draw(x+7, y+2); draw(x+7, y+5); draw(x+7, y+10); } // 以[x, y]为左上角绘制小岛 void drawisland(int x, int y){ draw(x, y, x+3, y+19); draw(x+1, y+1, x+2, y+18, '-'); draw(x+4, y+4, x+8, y+15); draw(x+4, y+5, x+7, y+14, '-'); } // 以[x, y]为左上角绘制金币 void drawcoin(int x, int y){ draw(x, y, x+5, y+4); draw(x+1, y+1, x+4, y+3, '.'); draw(x+2, y+2, x+3, y+2); draw(x, y, ' '); draw(x+5, y, ' '); draw(x, y+4, ' '); draw(x+5, y+4, ' '); } // 以[x, y]为左上角绘制马里奥 void drawman(int x, int y){ draw(x, y+5, x, y+12, '*'); x++; draw(x, y+4, x, y+15, '*'); x++; draw(x, y+4, x, y+7); draw(x, y+8, x, y+13, '.'); draw(x, y+12); x++; draw(x, y+2, x, y+14); draw(x, y+3, x, y+4, '.'); draw(x, y+8, x, y+12, '.'); draw(x, y+15, x, y+18, '.'); x++; draw(x, y+2, x, y+17); draw(x, y+5, x, y+11, '.'); x++; draw(x, y+5, x, y+15, '.'); x++; draw(x, y+4, x, y+13); draw(x, y+6, '*'); x++; draw(x, y+1, x, y+17); draw(x, y+5, x, y+11, '*'); x++; draw(x, y, x+2, y+20, '.'); draw(x, y+4, x+2, y+16, '*'); draw(x, y+3); draw(x, y+14, x+1, y+16); draw(x+1, y+16, '.'); draw(x+2, y+8, x+2, y+11, ' '); draw(x, y+7, '.'); draw(x, y+12, '.'); draw(x+3, y, x+4, y+19); draw(x+3, y+6, x+4, y+13, ' '); draw(x+3, y, x+3, y+1, ' '); draw(x+3, y+18, x+3, y+19, ' '); } // 打印输出 void printscreen(){ for(int i = 1; i <= n; i++){ last[i] = m; while(mp[i][last[i]] == ' ') last[i]--; } for(int i = 1; i <= n; i++,puts("")) for(int j = 1; j <= last[i]; j++) putchar(mp[i][j]); } int main(){ for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) mp[i][j] = ' '; // 绘制人 drawman(1, 12); // 绘制他脚下的三块泥土 drawland(14, 1); drawland(14, 15); drawland(14, 29); // 绘制金币下面的那个岛屿 drawisland(14, 43); // 绘制两个金币 drawcoin(5, 43); drawcoin(5, 58); // 输出 printscreen(); return 0; }

最新推荐

recommend-type

起点小说解锁.js

起点小说解锁.js
recommend-type

299-煤炭大数据智能分析解决方案.pptx

299-煤炭大数据智能分析解决方案.pptx
recommend-type

299-教育行业信息化与数据平台建设分享.pptx

299-教育行业信息化与数据平台建设分享.pptx
recommend-type

基于Springboot+Vue酒店客房入住管理系统-毕业源码案例设计.zip

网络技术和计算机技术发展至今,已经拥有了深厚的理论基础,并在现实中进行了充分运用,尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代,所以对于信息的宣传和管理就很关键。系统化是必要的,设计网上系统不仅会节约人力和管理成本,还会安全保存庞大的数据量,对于信息的维护和检索也不需要花费很多时间,非常的便利。 网上系统是在MySQL中建立数据表保存信息,运用SpringBoot框架和Java语言编写。并按照软件设计开发流程进行设计实现。系统具备友好性且功能完善。 网上系统在让售信息规范化的同时,也能及时通过数据输入的有效性规则检测出错误数据,让数据的录入达到准确性的目的,进而提升数据的可靠性,让系统数据的错误率降至最低。 关键词:vue;MySQL;SpringBoot框架 【引流】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

时间复杂度的一些相关资源

时间复杂度是计算机科学中用来评估算法效率的一个重要指标。它表示了算法执行时间随输入数据规模增长而变化的趋势。当我们比较不同算法的时间复杂度时,实际上是在比较它们在不同输入规模下的执行效率。 时间复杂度通常用大O符号来表示,它描述了算法执行时间上限的增长率。例如,O(n)表示算法执行时间与输入数据规模n呈线性关系,而O(n^2)则表示算法执行时间与n的平方成正比。当n增大时,O(n^2)算法的执行时间会比O(n)算法增长得更快。 在比较时间复杂度时,我们主要关注复杂度的增长趋势,而不是具体的执行时间。这是因为不同计算机硬件、操作系统和编译器等因素都会影响算法的实际执行时间,而时间复杂度则提供了一个与具体实现无关的评估标准。 一般来说,时间复杂度越低,算法的执行效率就越高。因此,在设计和选择算法时,我们通常希望找到时间复杂度尽可能低的方案。例如,在排序算法中,冒泡排序的时间复杂度为O(n^2),而快速排序的时间复杂度在平均情况下为O(nlogn),因此在处理大规模数据时,快速排序通常比冒泡排序更高效。 总之,时间复杂度是评估算法效率的重要工具,它帮助我们了解算法在不同输入规模下的性
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。