在gee中怎么把addlayer的图像导出

时间: 2024-05-03 14:22:27 浏览: 148
在GEE中,可以使用Export.image函数将addLayer的图像导出。具体步骤如下: 1. 右键点击添加的图层,选择“显示图像信息”获取图像的信息,包括图像ID、波段数、投影等。 2. 在代码编辑器中,使用Export.image函数设置导出参数,具体参数包括: - image:需要导出的图像,使用ee.Image()指定图像ID和波段。 - description:导出任务的名称。 - folder:导出结果存储的文件夹路径。 - scale:导出结果的分辨率。 - region:导出结果的范围,使用ee.Geometry()指定。 - crs:导出结果的投影。 - maxPixels:最大像素数,一般默认即可。 3. 运行代码,等待导出任务完成。导出结果会存储在指定的文件夹路径下。 示例代码: ```javascript var image = ee.Image('图像ID'); var region = ee.Geometry.Rectangle([xmin, ymin, xmax, ymax]); // 导出结果的范围 Export.image.toDrive({ image: image, description: '导出结果名称', folder: '导出结果存储的文件夹路径', scale: 30, // 导出结果的分辨率 region: region, crs: '投影', maxPixels: 1e13 // 最大像素数 }); ```
相关问题

var s2 = ee.ImageCollection('COPERNICUS/S2') .filterBounds(table) .filterDate('2019-01-01', '2019-12-31') .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) .map(function(image) { return image.clip(table); }) .median(); // 取中值影像 Map.addLayer(s2, {bands: ['B4', 'B3', 'B2'], max: 3000}, 'RGB');在GEE中将上述图像导出,代码

以下是在 GEE 中将图像导出的代码,你可以根据你的需求进行修改: ```javascript // 选择导出区域 var geometry = table.geometry(); // 设置导出参数 var exportParams = { image: s2, description: 'Sentinel_2', scale: 10, region: geometry }; // 开始导出 Export.image.toDrive(exportParams); ``` 这个代码会将 `s2` 变量中存储的 Sentinel-2 图像集合中的所有图像取中值后,根据指定的参数进行导出。其中,`geometry()` 方法可以从 Feature 对象中获取几何图形,`Export.image.toDrive()` 方法用于将图像导出到 Google Drive 中。你可以根据需要修改导出参数,比如 `description` 参数可以设置导出文件的名称,`scale` 参数可以设置导出图像的分辨率,`region` 参数可以设置导出的区域。

gee中如何将土地利用数据集中某一类提取出来

在GEE (Google Earth Engine) 中,处理和提取特定类别(如土地利用类型)的数据通常涉及以下步骤: 1. **加载数据集**:首先,你需要通过GEE的`ImageCollection`或者`Image`对象加载包含土地利用信息的遥感数据集,比如来自全球陆地覆盖数据库(GLCF)或其他类似的数据源。 ```javascript var landUseData = ee.ImageCollection('COPERNICUS/S2_L1C') .filterDate('2019-01-01', '2019-12-31'); // 示例:选择一年的数据 ``` 2. **数据预处理**:根据需要对图像进行预处理,例如调整分辨率、云掩码等。 3. **分类操作**:使用GEE的`select`或`bandMath`方法,结合分类索引来提取特定类别。如果你的数据已经有预先定义好的分类系统(每个土地利用类型的ID),你可以这样做: ```javascript var landUseClassOfInterest = landUseData.select('land_use_class').eq(yourClassId); ``` 这里`yourClassId`是你想要提取的具体土地利用类别对应的ID。 4. **可视化或导出**:最后,你可以将提取后的图像作为`ee.Image`展示,或者将其转换为GeoTIFF下载到本地或者上传到云存储服务。 ```javascript Map.addLayer(landUseClassOfInterest, {min: 0, max: 255, palette: ['red', 'green', 'blue']}, 'Land Use Class'); // 或者 task = landUseClassOfInterest.clip(geometry).exportToDrive({description: 'land_use_class_' + yourClassId}); ```
阅读全文

相关推荐

var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838); var imgCollection = ee.ImageCollection('COPERNICUS/S2_SR') .filterBounds(roi) .filterDate('2021-01-01', '2021-12-31') .select('B.*'); var lc = ee.Image('ESA/WorldCover/v100/2020'); var classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]; var remapValues = ee.List.sequence(0, 10); var label = 'lc'; lc = lc.remap(classValues, remapValues).rename(label).toByte(); var sample = imgCollection.map(function(img) { var sample = img.addBands(lc).stratifiedSample({ numPoints: 100, classBand: label, region: roi, scale: 10, geometries: true }); return sample; }).flatten(); // 向样本中添加一个随机值字段,并使用它将大约80%的特征划分为定型集,20%的特征划分为验证集。 sample = sample.randomColumn(); var trainingSample = sample.filter('random <= 0.8'); var validationSample = sample.filter('random > 0.8'); // 从训练样本中训练SVM分类器(C-SVM分类、投票决策过程、线性核)。 var trainedClassifier = ee.Classifier.libsvm().train({ features: trainingSample, classProperty: label, inputProperties: imgCollection.first().bandNames() }); // 获取有关已训练分类器的信息。 print('Results of trained classifier', trainedClassifier.explain()); // 获取训练样本的混淆矩阵和总体准确性。 var trainAccuracy = trainedClassifier.confusionMatrix(); print('Training error matrix', trainAccuracy); print('Training overall accuracy', trainAccuracy.accuracy()); // 获得验证样本的混淆矩阵和总体精度。 validationSample = validationSample.classify(trainedClassifier); var validationAccuracy = validationSample.errorMatrix(label, 'classification'); print('Validation error matrix', validationAccuracy); print('Validation accuracy', validationAccuracy.accuracy()); // 对来自训练好的分类器的反射图像进行分类。 var imgClassified = imgCollection.map(function(img){ return img.classify(trainedClassifier); }); // 将图层添加到地图。 var classVis = { min: 0, max: 10, palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4', 'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0'] }; Map.addLayer(imgClassified, classVis, 'Classification result');将最后的结果导出下载

var s2Sr = ee.ImageCollection('COPERNICUS/S2'); var s2Clouds = ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY'); var START_DATE = ee.Date('2018-01-01'); var END_DATE = ee.Date('2018-12-31'); var MAX_CLOUD_PROBABILITY = 65; function maskClouds(img) { var clouds = ee.Image(img.get('cloud_mask')).select('probability'); var isNotCloud = clouds.lt(MAX_CLOUD_PROBABILITY); return img.updateMask(isNotCloud); } // The masks for the 10m bands sometimes do not exclude bad data at // scene edges, so we apply masks from the 20m and 60m bands as well. // Example asset that needs this operation: // COPERNICUS/S2_CLOUD_PROBABILITY/20190301T000239_20190301T000238_T55GDP function maskEdges(s2_img) { return s2_img.updateMask( s2_img.select('B8A').mask().updateMask(s2_img.select('B9').mask())); } // Filter input collections by desired data range and region. var criteria = ee.Filter.and( ee.Filter.bounds(table), ee.Filter.date(START_DATE, END_DATE)); s2Sr = s2Sr.filter(criteria).map(maskEdges); s2Clouds = s2Clouds.filter(criteria); // Join S2 SR with cloud probability dataset to add cloud mask. var s2SrWithCloudMask = ee.Join.saveFirst('cloud_mask').apply({ primary: s2Sr, secondary: s2Clouds, condition: ee.Filter.equals({leftField: 'system:index', rightField: 'system:index'}) }); var s2CloudMasked = ee.ImageCollection(s2SrWithCloudMask).map(maskClouds).median(); var rgbVis = {min: 0, max: 3000, bands: ['B4', 'B3', 'B2']}; var rgbVis = {min: 0, max: 3000, bands: ['B4', 'B3', 'B2']}; Map.addLayer( s2CloudMasked, rgbVis, 'S2 SR masked at ' + MAX_CLOUD_PROBABILITY + '%', true);将合成图像的全波段下载

最新推荐

recommend-type

Origin教程009所需练习数据

Origin教程009所需练习数据
recommend-type

大模型的稀疏激活方法及其高效推理应用研究:基于dReLU激活函数

内容概要:本文提出了一个新的激活函数dReLU,用于提高大语言模型(LLM)的稀疏激活水平。dReLU可以显著减少模型推理过程中激活的参数数量,从而实现高效的模型推理。通过在Mistral-7B和Mixtral-47B模型上的实验,验证了dReLU的有效性。结果表明,使用dReLU的模型在性能上与原始模型相当甚至更好,同时减少了计算资源的需求,达到了2-5倍的推理加速。 适合人群:对深度学习、大语言模型和模型优化感兴趣的机器学习研究人员和技术开发者。 使用场景及目标:适用于需要高效推理的大语言模型应用场景,特别是资源受限的设备,如移动电话。目标是减少模型的计算资源消耗,提高推理速度。 其他说明:本文详细探讨了dReLU的设计和实验验证,提供了大量的实验数据和对比结果,展示了dReLU在多种任务上的优越表现。
recommend-type

STM32F103+PWM+DMA精准控制输出脉冲的数量和频率 源程序

最近参加一个农业机器人的比赛,由于今年的题目是蔬菜幼苗自动搬运,因此搬运部分需要用到一个三轴运动的装置,我们参考了3D打印机的原理,上面通过步进电机控制丝杆和皮带从而带动我们的抓手来抓举幼苗。因为比赛的幼苗和幼苗的基质比较小,这个过程需要精度比较高,查询了一些资料后,我想到了用dma来给STM32单片机的定时器寄存器ARR发送数据来精准控制输出pwm的数量,从而可以精准控制步进电机转动的度数,可以十分方便的计算出到某个位置需要的脉冲。
recommend-type

白色大气风格的商务团队公司模板下载.zip

白色大气风格的商务团队公司模板下载.zip
recommend-type

2023-04-06-项目笔记 - 第三百五十八阶段 - 4.4.2.356全局变量的作用域-356 -2025.12.25

2023-04-06-项目笔记-第三百五十八阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用域与生命周期 4.4.1局部变量的作用域 4.4.2全局变量的作用域 4.4.2.1全局变量的作用域_1 4.4.2.356局变量的作用域_356- 2024-12-25
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。