设I=∫∫根号(R^2-x^2-y^2)dxdy,D是由x^2+y^2=R^2所围的闭区域,则I=?A.1/9R^3(3π-4) B.0 C.-1/9R^3(3π-4)D.2/3πR^3
时间: 2023-11-13 11:25:57 浏览: 89
根号x--小数点后指定位数(2).py
我们可以使用极坐标变量来计算该积分。设$r=\sqrt{x^2+y^2}$,则有$dxdy=rdrd\theta$。当$x^2+y^2=R^2$时,$r=R$,因此积分区域变为$0\leq r\leq R$,$0\leq \theta \leq 2\pi$。
于是,原式可以写成:
$$
\begin{aligned}
I &= \iint_D \sqrt{R^2-x^2-y^2}\ dxdy \\
&= \int_0^{2\pi} \int_0^R \sqrt{R^2-r^2} \cdot r\ dr\ d\theta \\
&= 2\pi \int_0^R \sqrt{R^2-r^2} \cdot r\ dr \\
&= 2\pi \cdot \frac{1}{2} \cdot \frac{1}{2} \int_0^{R^2} \sqrt{R^2-u}\ du \quad (令u=R^2-r^2)\\
&= \pi \cdot \frac{1}{2} \cdot \frac{2}{3} (R^2)^{\frac{3}{2}} \\
&= \frac{1}{3}\pi R^3
\end{aligned}
$$
因此,答案为D. $I=2/3\pi R^3$。
阅读全文