# 划分训练集和测试集,70% 作为训练集 train_size = int(len(data_X) * 0.7) test_size = len(data_X) - train_size train_X = data_X[:train_size] train_Y = data_Y[:train_size] test_X = data_X[train_size:] test_Y = data_Y[train_size:] train_X = train_X.reshape(-1, 1, 2) train_Y = train_Y.reshape(-1, 1, 1) test_X = test_X.reshape(-1, 1, 2) train_x = torch.from_numpy(train_X) train_y = torch.from_numpy(train_Y) test_x = torch.from_numpy(test_X)

时间: 2023-11-06 13:56:00 浏览: 47
这段代码是在将数据集划分为训练集和测试集后,将其进行了reshape操作,然后将numpy数组转化为了PyTorch tensor。其中train_X和test_X是输入特征,train_Y和test_Y是对应的标签。reshape操作将二维的输入特征变成了三维的tensor,第一个维度表示样本数量,第二个维度表示每个样本只有一个特征,第三个维度表示每个特征有两个值。同样地,对于标签train_Y和test_Y,reshape操作将其从二维变成了三维tensor,第一个维度表示样本数量,第二个维度表示每个样本只有一个标签,第三个维度表示每个标签只有一个值。最后,将numpy数组转化为PyTorch tensor,可以方便地用于模型的训练和评估。
相关问题

train_size = int(len(data_X) * 0.7) test_size = len(data_X) - train_size train_X = data_X[:train_size] train_Y = data_Y[:train_size] test_X = data_X[train_size:] test_Y = data_Y[train_size:]

这是一个将数据集data_X和data_Y按照7:3的比例划分为训练集和测试集的操作。其中train_size表示训练集大小,test_size表示测试集大小,两者之和等于总数据集大小。train_X和train_Y分别表示训练集的特征和标签,test_X和test_Y分别表示测试集的特征和标签。具体实现方式是根据数据集大小和划分比例计算出训练集和测试集的大小,然后分别从数据集中按照比例选取对应的特征和标签。这样的划分方式可以用于模型的训练和评估。

ran_data = dataset for i in range(len(ran_data)); print(ran_data[i]) train_size= int(len(ran_data)*0.7) test_size=len(ran_data)-train_size train_dataset,test_dataset=torch.utils.data.random_split(ran_data,[train_size, test_size])

您的代码有一些小错误,我来帮您修正一下: ```python import torch from torch.utils.data import random_split ran_data = dataset # 假设您已经定义了 dataset 变量 train_size = int(len(ran_data) * 0.7) test_size = len(ran_data) - train_size train_dataset, test_dataset = random_split(ran_data, [train_size, test_size]) for data in train_dataset: print(data) for data in test_dataset: print(data) ``` 这样您可以将 `ran_data` 数据集随机划分为训练集和测试集,并在循环中打印出每个样本。请确保您先定义了 `dataset` 变量并将其赋值给 `ran_data`。

相关推荐

import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM import matplotlib.pyplot as plt # 读取CSV文件 data = pd.read_csv('77.csv', header=None) # 将数据集划分为训练集和测试集 train_size = int(len(data) * 0.7) train_data = data.iloc[:train_size, 1:2].values.reshape(-1,1) test_data = data.iloc[train_size:, 1:2].values.reshape(-1,1) # 对数据进行归一化处理 scaler = MinMaxScaler(feature_range=(0, 1)) train_data = scaler.fit_transform(train_data) test_data = scaler.transform(test_data) # 构建训练集和测试集 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back): X.append(dataset[i:(i+look_back), 0]) Y.append(dataset[i+look_back, 0]) return np.array(X), np.array(Y) look_back = 3 X_train, Y_train = create_dataset(train_data, look_back) X_test, Y_test = create_dataset(test_data, look_back) # 转换为LSTM所需的输入格式 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(look_back, 1))) model.add(LSTM(units=50)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, epochs=100, batch_size=32) # 预测测试集并进行反归一化处理 Y_pred = model.predict(X_test) Y_pred = scaler.inverse_transform(Y_pred) Y_test = scaler.inverse_transform(Y_test) # 输出RMSE指标 rmse = np.sqrt(np.mean((Y_pred - Y_test)**2)) print('RMSE:', rmse) # 绘制训练集真实值和预测值图表 train_predict = model.predict(X_train) train_predict = scaler.inverse_transform(train_predict) train_actual = scaler.inverse_transform(Y_train.reshape(-1, 1)) plt.plot(train_actual, label='Actual') plt.plot(train_predict, label='Predicted') plt.title('Training Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show() # 绘制测试集真实值和预测值图表 plt.plot(Y_test, label='Actual') plt.plot(Y_pred, label='Predicted') plt.title('Testing Set') plt.xlabel('Time (h)') plt.ylabel('kWh') plt.legend() plt.show()以上代码运行时报错,错误为ValueError: Expected 2D array, got 1D array instead: array=[-0.04967795 0.09031832 0.07590125]. Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.如何进行修改

import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense data = pd.read_csv('车辆:274序:4结果数据.csv') x = data[['车头间距', '原车道前车速度']].values y = data['本车速度'].values train_size = int(len(x) * 0.7) test_size = len(x) - train_size x_train, x_test = x[0:train_size,:], x[train_size:len(x),:] y_train, y_test = y[0:train_size], y[train_size:len(y)] from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) model = Sequential() model.add(LSTM(50, input_shape=(2, 1))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') history = model.fit(x_train.reshape(-1, 2, 1), y_train, epochs=100, batch_size=32, validation_data=(x_test.reshape(-1, 2, 1), y_test)) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper right') plt.show() train_predict = model.predict(x_train.reshape(-1, 2, 1)) test_predict = model.predict(x_test.reshape(-1, 2, 1)) train_predict = scaler.inverse_transform(train_predict) train_predict = train_predict.reshape(-1) # 将结果变为一维数组 y_train = scaler.inverse_transform(y_train.reshape(-1, 1)).reshape(-1) # 将结果变为一维数组 test_predict = scaler.inverse_transform(test_predict) y_test = scaler.inverse_transform([y_test]) plt.plot(y_train[0], label='train') plt.plot(train_predict[:,0], label='train predict') plt.plot(y_test[0], label='test') plt.plot(test_predict[:,0], label='test predict') plt.legend() plt.show()报错Traceback (most recent call last): File "C:\Users\马斌\Desktop\NGSIM_data_processing\80s\lstmtest.py", line 42, in <module> train_predict = scaler.inverse_transform(train_predict) File "D:\python\python3.9.5\pythonProject\venv\lib\site-packages\sklearn\preprocessing\_data.py", line 541, in inverse_transform X -= self.min_ ValueError: non-broadcastable output operand with shape (611,1) doesn't match the broadcast shape (611,2)

最新推荐

recommend-type

毕业设计+编程项目实战+报名管理信息系统-基于ASP.NET技术(含完整源代码+开题报告+设计文档)

一.系统运行必备环境: 1.软件环境:windows XP、Access 2003及以上版本、Excel 2003及其以上版本和.net FrameWork。 2.硬件环境:CPU要求PIII800及其以上,内存64M以上。 3.用户名:mere 密码:mere(未删除本记录条件下有效) 二.培训管理信息系统需要完成功能主要有: 1.系统管理 包括登陆、退出功能。 2.学生管理 包括报名、调班、延班、插班、退费等功能。 (1)报名:学生填写入学培训协议,录入人员依照协议将学生信息记入报名表和班级学生名册。 (2)调班:按照报名日期找出学生报名信息核对身份,在原来所报班级名册删除学生名字,在调班班级名册添加学生名字。 (3)延班:基本同上,按照报名日期找出学生报名信息核对身份,在原来所报班级名册删除学生名字,将该学生记入延班学生名册,以便调入新班级。 (4)插班:为了照顾关系单位的学生,特设置了插班的功能,可以根据需要设定学生学号。 (5)退费:根据培训机构实际情况有退费的实际需求,设置了全部退费和部分退费功能。 ①全部退费 按照报名日期找出学生报名信息核对身份,并依照协议判断用户是
recommend-type

130_基于JAVA的OA办公系统的设计与实现-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

stm32驱动hx711源码分享 提供给大家学习

HX711是一款高精度、低成本的压力传感器信号放大器,主要用于测量微小变化的压力或重力信号。 本次使用STM32来驱动他 获得压力数据
recommend-type

xinit 程序用于在不使用显示管理器(如 xdm)的系统上启动 X Window 系统服务器和第一个客户端程序

xinit 程序用于在不使用显示管理器(如 xdm)的系统上启动 X Window 系统服务器和第一个客户端程序。
recommend-type

蓝桥杯国赛题之C++分糖果.zip

蓝桥杯国赛 蓝桥杯国赛题之C++分糖果
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。