如何用python实现:对于提取的平面点云,通过外接矩形面积近似作为平面点云面积,并经验性地设置面积阈值 s( 0. 02 m2 ) ,剔除面积较小的平面,将其放回至剩余点云中。建立邻域结构。以平面为基础,再次采用KD-tree 在剩余点云中,对平面点云建立邻域结构,并去除重复的邻域点。平面生长。在每一个平面邻域中,计算其到平面的距离,若小于距离阈值 d1( 0. 03 m) ,则将其归类为当前平面点云
时间: 2024-03-03 19:48:38 浏览: 77
以下是使用Open3D实现对于提取的平面点云进行平面生长的Python代码示例:
```python
import open3d as o3d
import numpy as np
# 读取点云数据
pcd = o3d.io.read_point_cloud("point_cloud.ply")
# 定义点云点域区域生长参数
criteria = o3d.geometry.PointCloud.cluster_dbscan_eps
# 执行点域区域生长
labels = np.array(pcd.cluster_dbscan(eps=0.02, min_points=10, print_progress=True))
# 剩余点云
pcd_remain = pcd.select_by_index(np.where(labels < 0)[0])
# 定义面片参数
poisson_mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd_remain, depth=8)
# 定义面域区域生长参数
clustered_labels = poisson_mesh.cluster_connected_triangles()
# 剔除面积较小的平面
plane_areas = []
for i in range(len(clustered_labels)):
plane = poisson_mesh.extract_triangle_mesh_for_cluster(i)
bbox = plane.get_axis_aligned_bounding_box()
area = bbox.volume()
plane_areas.append(area)
if area < 0.02:
poisson_mesh.delete_triangle_mesh(i)
clustered_labels[clustered_labels > i] -= 1
# 建立邻域结构
tree = o3d.geometry.KDTreeFlann(pcd_remain)
plane_neighbors = []
for i in range(len(clustered_labels)):
plane = poisson_mesh.extract_triangle_mesh_for_cluster(i)
plane_points = np.array(plane.vertices)
_, indices, _ = tree.search_knn_vector_3d(plane_points, k=10)
indices = np.unique(indices)
indices = indices[indices >= 0]
plane_neighbors.append(indices)
# 平面生长
for i in range(len(clustered_labels)):
plane = poisson_mesh.extract_triangle_mesh_for_cluster(i)
plane_points = np.array(plane.vertices)
plane_indices = np.arange(len(plane_points))
neighbor_indices = plane_neighbors[i]
for j in range(len(neighbor_indices)):
neighbor_index = neighbor_indices[j]
neighbor_point = pcd_remain.points[neighbor_index]
_, index, _ = tree.search_knn_vector_3d([neighbor_point], k=1)
if index[0] in plane_indices:
continue
neighbor_plane_indices = []
for k in range(len(clustered_labels)):
if neighbor_index in plane_neighbors[k]:
neighbor_plane_indices.append(k)
if len(neighbor_plane_indices) == 1:
neighbor_plane_index = neighbor_plane_indices[0]
neighbor_plane = poisson_mesh.extract_triangle_mesh_for_cluster(neighbor_plane_index)
neighbor_plane_points = np.array(neighbor_plane.vertices)
neighbor_plane_indices = np.arange(len(neighbor_plane_points))
neighbor_plane_normals = np.array(neighbor_plane.vertex_normals)
distances = np.abs(np.dot(neighbor_plane_normals, (neighbor_point - neighbor_plane_points).T))
if np.min(distances) < 0.03:
plane_points = np.vstack((plane_points, neighbor_point))
plane_indices = np.hstack((plane_indices, index[0]))
cluster_indices = np.where(clustered_labels == i)[0]
pcd_remain.colors[cluster_indices] = [1, 0, 0]
plane_colors = np.zeros((len(plane_points), 3))
plane_colors[:, 0] = 0.5
plane_colors[:, 1] = 0.5
plane_colors[:, 2] = 0.5
pcd_remain.colors[plane_indices] = plane_colors
o3d.visualization.draw_geometries([pcd_remain])
```
需要注意的是,以上代码仅作为示例,实际应用时需要根据具体的数据和需求进行参数调整和算法优化。
阅读全文