能帮我完整的写出使用pycharm写一份语音信号处理课程的语音识别代码使用模型算法等,注释详细 ,识别中文英文数字
时间: 2024-03-24 19:40:47 浏览: 122
当然可以。首先,我们需要安装一些必要的库:pyaudio、SpeechRecognition、numpy、pandas、jieba、pypinyin、tensorflow等。
然后,我们需要定义一个函数来读取麦克风录入的音频:
``` python
import pyaudio
def record_audio():
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 16000
RECORD_SECONDS = 5
audio = pyaudio.PyAudio()
stream = audio.open(format=FORMAT, channels=CHANNELS,
rate=RATE, input=True,
frames_per_buffer=CHUNK)
print("Start recording...")
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data)
print("Recording finished.")
stream.stop_stream()
stream.close()
audio.terminate()
return b''.join(frames)
```
接下来,我们需要定义一个函数来将音频数据转换为文本。我们可以使用SpeechRecognition库中的Recognizer类来实现:
``` python
import speech_recognition as sr
def recognize_speech(audio):
r = sr.Recognizer()
try:
text = r.recognize_google(audio, language='zh-CN')
return text
except sr.UnknownValueError:
print("Google Speech Recognition could not understand audio")
except sr.RequestError as e:
print("Could not request results from Google Speech Recognition service; {0}".format(e))
```
为了处理中文,我们需要使用jieba和pypinyin库来进行分词和拼音转换:
``` python
import jieba
from pypinyin import lazy_pinyin
def process_text(text):
# 分词
seg_list = jieba.cut(text, cut_all=False)
text = ' '.join(seg_list)
# 转换为拼音
pinyin_list = lazy_pinyin(text)
text = ' '.join(pinyin_list)
return text
```
最后,我们需要加载预训练的语音识别模型,并使用它来识别文本:
``` python
import tensorflow as tf
import numpy as np
import pandas as pd
# 加载预训练模型
model = tf.keras.models.load_model('model.h5')
# 加载标签
label_df = pd.read_csv('labels.csv', header=None)
label_dict = label_df.to_dict()[0]
def recognize_audio():
audio = record_audio()
text = recognize_speech(audio)
text = process_text(text)
# 将文本转换为数字序列
text_seq = [label_dict.get(char, 0) for char in text]
# 填充序列
text_seq = np.pad(text_seq, (0, 16000 - len(text_seq)))
# 预测结果
result = model.predict(np.array([text_seq]))
result = np.argmax(result)
return label_dict[result]
```
以上就是使用pycharm写一份语音信号处理课程的语音识别代码的全部内容。
阅读全文