自适应双线性池化,代码如何实现
时间: 2023-09-27 19:11:56 浏览: 122
自适应双线性池化是双线性池化的一种变体,它可以自动适应输入特征图的尺寸和通道数。以下是一个使用PyTorch实现自适应双线性池化的代码示例:
```python
import torch
import torch.nn as nn
class AdaptiveBilinearPooling(nn.Module):
def __init__(self, output_size):
super(AdaptiveBilinearPooling, self).__init__()
self.output_size = output_size
def forward(self, x):
batch_size, channels, height, width = x.size()
# 计算双线性池化矩阵
phi = nn.functional.avg_pool2d(x, kernel_size=[height, width], stride=[height, width])
phi = torch.squeeze(torch.squeeze(phi, dim=-1), dim=-1)
phi = torch.bmm(phi, phi.transpose(1, 2)) / (height * width)
# 对双线性池化矩阵进行归一化
phi = phi.view(batch_size, -1)
phi = torch.sign(phi) * torch.sqrt(torch.abs(phi) + 1e-5)
phi = nn.functional.normalize(phi)
# 计算自适应权重
weight = nn.functional.adaptive_avg_pool1d(phi.unsqueeze(-1), self.output_size)
weight = torch.squeeze(weight, dim=-1)
# 进行自适应双线性池化
out = torch.matmul(x.view(batch_size, channels, -1), weight.unsqueeze(-1))
out = out.view(batch_size, channels, self.output_size, self.output_size)
return out
```
在上述代码中,AdaptiveBilinearPooling类表示自适应双线性池化层,它的输入是一个四维张量,表示一个批次的特征图。output_size参数表示输出特征图的大小。在forward函数中,我们首先计算输入特征图的双线性池化矩阵phi,然后对其进行归一化和自适应池化,最后进行自适应双线性池化操作并返回输出特征图。
阅读全文