请用Python实现以下代码,请确保使用到的每一个库函数可以顺利运行:Use the first 100 rows as training data to construct 90%, 80%, 60% prediction intervals for waiting time for the remaining 172 data trough conformal prediction. Is your prediction correct 90%, 80%, 60% of the time? (Use any nonconformity measure you like.)
时间: 2024-02-18 07:02:56 浏览: 126
这个问题需要的库函数不明确,因此我会提供一种可能的Python实现,使用常用的数据科学和机器学习库函数。
首先,我们需要读取数据集并将其划分为训练集和测试集:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
# 读取数据集
data = pd.read_csv('data.csv')
# 划分训练集和测试集
train_data, test_data = train_test_split(data, test_size=0.5, random_state=42)
```
然后,我们需要定义一个非符合性度量,这里我们使用绝对误差作为度量:
```python
def absolute_error(y_true, y_pred):
return abs(y_true - y_pred)
```
接下来,我们使用训练集中的前100行数据来训练一个模型,并使用其余的数据来构造置信区间:
```python
from nonconformist.cp import IcpClassifier
from nonconformist.nc import AbsErrorErrFunc
from sklearn.linear_model import LinearRegression
# 训练模型
model = LinearRegression()
model.fit(train_data[['X']], train_data[['Y']])
# 构造IcpClassifier
icp = IcpClassifier(model, AbsErrorErrFunc())
# 预测测试集的结果
X_test = test_data[['X']]
y_test = test_data[['Y']]
predictions = model.predict(X_test)
# 构造置信区间
interval90 = icp.predict_interval(X_test[:172], significance=0.1)
interval80 = icp.predict_interval(X_test[:172], significance=0.2)
interval60 = icp.predict_interval(X_test[:172], significance=0.4)
```
最后,我们可以计算预测的正确率:
```python
# 计算是否预测正确
correct90 = 0
correct80 = 0
correct60 = 0
for i, (x, y, pred) in enumerate(zip(X_test[:172], y_test[:172], predictions[:172])):
if y >= interval90[i][0] and y <= interval90[i][1]:
correct90 += 1
if y >= interval80[i][0] and y <= interval80[i][1]:
correct80 += 1
if y >= interval60[i][0] and y <= interval60[i][1]:
correct60 += 1
# 计算正确率
accuracy90 = correct90 / 172
accuracy80 = correct80 / 172
accuracy60 = correct60 / 172
print('90% prediction interval accuracy:', accuracy90)
print('80% prediction interval accuracy:', accuracy80)
print('60% prediction interval accuracy:', accuracy60)
```
这个实现可能不是最优的,但它可以给你一个大致的思路。请注意,这个实现可能需要额外的库函数,你可以使用 pip 命令来安装它们。
阅读全文