uwb与imu卡尔曼ekf融合定位python代码
时间: 2023-08-12 14:08:14 浏览: 272
以下是一个使用Python编写的UWB与IMU卡尔曼滤波融合定位的代码示例:
```python
import numpy as np
# UWB测量模型
def uwb_measurement_model(state):
# 假设UWB测量值是距离的直接测量
return state[0]
# IMU运动模型
def imu_motion_model(state, dt, a):
# 假设运动模型为匀速直线运动
x = state[0] + state[1] * dt + 0.5 * a * dt**2
v = state[1] + a * dt
return np.array([x, v])
# 卡尔曼滤波
def kalman_filter(uwb_measurement, imu_measurement, dt):
# 状态向量 [位置, 速度]
state = np.array([0, 0])
# 状态协方差矩阵初始化为较大值
P = np.diag([1e6, 1e6])
# 系统噪声方差(IMU测量误差)
Q = np.diag([0.01, 0.01])
# 测量噪声方差(UWB测量误差)
R = np.diag([0.1])
for i in range(len(uwb_measurement)):
# 预测步骤
state = imu_motion_model(state, dt, imu_measurement[i])
# 预测协方差矩阵更新
F = np.array([[1, dt],
[0, 1]])
P = np.matmul(np.matmul(F, P), F.T) + Q
# 测量更新步骤
H = np.array([1, 0])
K = np.matmul(P, H.T) / (np.matmul(np.matmul(H, P), H.T) + R)
residual = uwb_measurement[i] - uwb_measurement_model(state)
state = state + K * residual
# 协方差矩阵更新
P = np.matmul(np.eye(2) - np.matmul(K, H), P)
return state
# 测试数据
dt = 0.1 # 时间间隔
uwb_measurement = [2.1, 2.5, 3.0, 3.5] # UWB测量值
imu_measurement = [0.5, 0.2, 0.1, 0.3] # IMU测量值加速度
# 运行卡尔曼滤波
estimated_state = kalman_filter(uwb_measurement, imu_measurement, dt)
# 输出估计的位置和速度
print("Estimated Position:", estimated_state[0])
print("Estimated Velocity:", estimated_state[1])
```
请注意,这只是一个简单的UWB与IMU卡尔曼滤波融合定位的代码示例。实际应用中,您可能需要根据具体情况进行更复杂的模型设计和参数调整。
阅读全文