我用于训练的代码报错:“TypeError: 'module' object is not callable”,你帮我看看是什么原因。代码如下:import os import sys import torch import torchvision from dataset import MyDataset from yolov5 import YOLOv5 # 修改批次大小,图像大小和训练轮数 batch_size = 16 img_size = 512 epochs = 50 # 指定数据集路径和标签文件路径 dataset_path = 'F:/moda/images' label_file = 'F:/moda/labels' # 加载数据集和标签 dataset = MyDataset(dataset_path, label_file, img_size=img_size) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True) # 初始化YOLOv5网络 model = YOLOv5(num_classes=1, num_anchors=3) # 定义损失函数和优化器 criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(model.parameters()) # 训练网络 for epoch in range(epochs): for i, (images, targets) in enumerate(dataloader): # 将数据加载到GPU上 images = images.cuda() targets = targets.cuda() # 前向传播 outputs = model(images) # 计算损失 loss = criterion(outputs, targets) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 打印训练状态 print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, i+1, len(dataloader), loss.item()))
时间: 2024-03-24 11:36:05 浏览: 20
Django错误:TypeError at / ‘bool’ object is not callable解决
这个错误通常发生在尝试将模块作为函数进行调用时。在你的代码中,这个错误可能是由于从 yolov5 模块中导入了 YOLOv5 类,但未将其实例化就尝试调用它。你可以尝试在实例化 YOLOv5 类之后将其传递给 optimizer 和 criterion。 代码如下:
```python
import os
import sys
import torch
import torchvision
from dataset import MyDataset
from yolov5 import YOLOv5
# 修改批次大小,图像大小和训练轮数
batch_size = 16
img_size = 512
epochs = 50
# 指定数据集路径和标签文件路径
dataset_path = 'F:/moda/images'
label_file = 'F:/moda/labels'
# 加载数据集和标签
dataset = MyDataset(dataset_path, label_file, img_size=img_size)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 初始化YOLOv5网络
model = YOLOv5(num_classes=1, num_anchors=3)
# 定义损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
# 训练网络
for epoch in range(epochs):
for i, (images, targets) in enumerate(dataloader):
# 将数据加载到GPU上
images = images.cuda()
targets = targets.cuda()
# 前向传播
outputs = model(images)
# 计算损失
loss = criterion(outputs, targets)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 打印训练状态
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, i+1, len(dataloader), loss.item()))
```
如果问题仍然存在,请提供完整的错误信息和堆栈跟踪。这将有助于更好地理解你的问题并提供更准确的解决方案。
阅读全文