写出使用torchsummary库中的summary函数计算模型大小的代码
时间: 2024-06-10 22:07:58 浏览: 95
当然可以,以下是使用torchsummary库中的summary函数计算模型大小的代码示例:
```python
import torch
from torchsummary import summary
model = some_model() # 替换成你自己的模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
summary(model, input_size=(batch_size, input_channels, height, width), device=device)
```
其中,`some_model()`是你自己创建的模型;`batch_size`是你选择的批大小;`input_channels`、`height`和`width`是你选择的输入张量的通道数、高度和宽度。当你运行该代码时,你将在输出中看到类似下面的内容:
```
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [128, 64, 56, 56] 9,408
BatchNorm2d-2 [128, 64, 56, 56] 128
ReLU-3 [128, 64, 56, 56] 0
MaxPool2d-4 [128, 64, 28, 28] 0
Conv2d-5 [128, 128, 28, 28] 73,728
BatchNorm2d-6 [128, 128, 28, 28] 256
ReLU-7 [128, 128, 28, 28] 0
MaxPool2d-8 [128, 128, 14, 14] 0
Conv2d-9 [128, 256, 14, 14] 294,912
BatchNorm2d-10 [128, 256, 14, 14] 512
ReLU-11 [128, 256, 14, 14] 0
Conv2d-12 [128, 256, 14, 14] 589,824
BatchNorm2d-13 [128, 256, 14, 14] 512
ReLU-14 [128, 256, 14, 14] 0
MaxPool2d-15 [128, 256, 7, 7] 0
Linear-16 [128, 1024] 25,690,880
ReLU-17 [128, 1024] 0
Dropout-18 [128, 1024] 0
Linear-19 [128, 10] 10,250
================================================================
Total params: 26,669,890
Trainable params: 26,669,890
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 73.78
Forward/backward pass size (MB): 10848.50
Params size (MB): 101.69
Estimated Total Size (MB): 10923.97
-----------------------------------------------------------------
```
这些输出提供了你的模型各层的输出形状和参数数量,以及整个模型所需的总参数数量和总内存大小。记得替换掉`some_model()`、`batch_size`、`input_channels`、`height`和`width`等变量以符合你的情况。
阅读全文