如何使用粒子群算法对双S曲线进行优化并用于delta机械臂的路劲规划并给出代码
时间: 2024-03-17 22:40:44 浏览: 74
以下是使用粒子群算法对双S曲线进行优化并用于delta机械臂路径规划的代码示例。在此示例中,我们使用Python编程语言和NumPy库实现此算法。
```python
import numpy as np
# 定义双S曲线的参数化方程和适应度函数
def s_curve(x, a, b, c, d, e):
return a + b * (1 - np.exp(-c * x)) / (1 + np.exp(-d * (x - e)))
def fitness(x, y, z, a, b, c, d, e, w1, w2, w3):
# 计算路径长度和加速度
path_len = np.sum(np.sqrt(np.sum(np.diff(x, axis=0) ** 2, axis=1)))
v = np.diff(x, axis=0)
a = np.diff(v, axis=0)
acc = np.sqrt(np.sum(a ** 2, axis=1))
# 计算适应度值
return w1 * path_len + w2 * np.max(acc) + w3 * np.sum(y ** 2 + z ** 2)
# 初始化粒子群
def init_swarm(n_particles, n_dims, bounds):
swarm = np.random.uniform(bounds[:, 0], bounds[:, 1], size=(n_particles, n_dims))
best_pos = swarm.copy()
best_val = np.inf * np.ones(n_particles)
return swarm, best_pos, best_val
# 更新粒子的速度和位置
def update_swarm(swarm, best_pos, best_val, w, c1, c2, bounds, func):
n_particles, n_dims = swarm.shape
vel = np.zeros_like(swarm)
for i in range(n_particles):
# 更新速度
vel[i] = w * vel[i] + c1 * np.random.rand() * (best_pos[i] - swarm[i]) + c2 * np.random.rand() * (best_pos.min(axis=0) - swarm[i])
# 更新位置
pos = swarm[i] + vel[i]
pos = np.clip(pos, bounds[:, 0], bounds[:, 1])
# 更新适应度值
val = func(*pos)
if val < best_val[i]:
best_pos[i] = pos
best_val[i] = val
return swarm, best_pos, best_val
# 粒子群优化算法
def pso(func, bounds, n_particles=20, n_iters=100, w=0.8, c1=2.0, c2=2.0, w1=1.0, w2=1.0, w3=1.0):
n_dims = len(bounds)
swarm, best_pos, best_val = init_swarm(n_particles, n_dims, bounds)
for i in range(n_iters):
swarm, best_pos, best_val = update_swarm(swarm, best_pos, best_val, w, c1, c2, bounds, func)
# 返回最优解
idx = np.argmin(best_val)
return best_pos[idx]
# 生成优化后的双S曲线
def generate_s_curve(params):
t = np.linspace(0, 1, 100)
x = s_curve(t, *params)
y = s_curve(t, *params[1:]) - s_curve(t, *params[:-1])
z = np.gradient(y)
return np.column_stack((x, y, z))
# 使用插值方法将优化后的双S曲线转换为关节角度控制指令
def interpolate_s_curve(s_curve, n_points):
from scipy.interpolate import interp1d
t = np.linspace(0, 1, s_curve.shape[0])
f = interp1d(t, s_curve, axis=0)
t_new = np.linspace(0, 1, n_points)
return f(t_new)
# 定义双S曲线的初始参数
params = [0.0, 0.0, 0.0, 0.0, 10.0, 20.0, 20.0, 30.0, 30.0, 40.0, 40.0, 50.0, 50.0, 60.0, 60.0, 70.0, 70.0, 80.0, 80.0, 90.0, 90.0, 100.0, 100.0, 110.0, 110.0, 120.0, 120.0, 130.0, 130.0, 140.0, 140.0, 150.0, 150.0, 160.0, 160.0, 170.0, 170.0, 180.0, 180.0, 190.0, 190.0, 200.0, 200.0, 210.0, 210.0, 220.0, 220.0, 230.0, 230.0, 240.0, 240.0, 250.0, 250.0, 260.0, 260.0, 270.0, 270.0, 280.0, 280.0, 290.0, 290.0, 300.0, 300.0, 310.0, 310.0, 320.0, 320.0, 330.0, 330.0, 340.0, 340.0, 350.0, 350.0, 360.0, 360.0, 370.0, 370.0, 380.0, 380.0, 390.0, 390.0, 400.0, 400.0, 410.0, 410.0, 420.0, 420.0, 430.0, 430.0, 440.0, 440.0, 450.0, 450.0, 460.0, 460.0, 470.0, 470.0, 480.0, 480.0, 490.0, 490.0, 500.0]
bounds = np.array([(0.0, 500.0)] * len(params))
# 使用粒子群算法优化双S曲线
best_params = pso(lambda *args: fitness(*args, w1=1.0, w2=1.0, w3=1.0), bounds, n_particles=50, n_iters=100)
# 生成优化后的双S曲线,并将其转换为关节角度控制指令
s_curve_opt = generate_s_curve(best_params)
s_curve_interpolated = interpolate_s_curve(s_curve_opt, n_points=1000)
# 将关节角度控制指令发送给delta机械臂执行
# ...
```
需要注意的是,此示例仅用于演示粒子群算法的应用,实际的机械臂路径规划还需要考虑许多因素,如碰撞检测、动力学约束等。因此,在实际应用中,可能需要根据实际情况进行修改和优化。
阅读全文