编写程序完成页式虚拟存储管理中地址转换过程和模拟缺页中断的处理。首先对给定的地址转换工作,若发生缺页则先进行缺页中断,然后再进行地址转换;最后编写主函数对所做工作进行测试。假定主存64KB,每个主存块1024B,作业最大支持到64KB,系统中每个作业分得主存块4块。

时间: 2024-05-15 12:13:06 浏览: 17
为了完成页式虚拟存储管理中地址转换和模拟缺页中断的处理,我们需要实现以下几个部分的代码: 1. 地址转换:将逻辑地址转换成物理地址。 2. 缺页中断处理:当发生缺页时,需要将缺失的页面从辅存中调入主存中。 3. 主函数:用于测试我们所编写的代码。 下面是完整的代码实现: ```c++ #include <iostream> #include <vector> #include <unordered_map> using namespace std; #define PAGE_SIZE 1024 #define PAGE_NUM 64 #define FRAME_NUM 64 #define FRAME_SIZE 1024 #define MAX_JOB_SIZE 65536 #define MAX_JOB_FRAMES 4 // 页表项结构体定义 struct PageTableEntry { bool present; // 是否在内存中 int frame; // 对应的物理块号 }; // 主存和辅存定义 vector<char> mainMemory(FRAME_NUM * FRAME_SIZE); vector<char> secondaryMemory(PAGE_NUM * PAGE_SIZE); // 页表定义 unordered_map<int, PageTableEntry> pageTable; // 虚拟地址转物理地址 int translateAddress(int job, int virtualAddress) { int pageNum = virtualAddress / PAGE_SIZE; int offset = virtualAddress % PAGE_SIZE; if (pageTable.count(job * PAGE_NUM + pageNum) == 0) { // 缺页中断处理 int frameNum = rand() % FRAME_NUM; int writeBackPage = -1; for (auto& entry : pageTable) { if (entry.second.frame == frameNum && entry.second.present) { writeBackPage = entry.first; break; } } if (writeBackPage != -1) { // 写回辅存 int offsetInFrame = (writeBackPage % PAGE_NUM) * PAGE_SIZE; int offsetInMemory = pageTable[writeBackPage].frame * FRAME_SIZE + offsetInFrame; for (int i = 0; i < PAGE_SIZE; i++) { secondaryMemory[offsetInFrame + i] = mainMemory[offsetInMemory + i]; } pageTable[writeBackPage].present = false; } // 读入新页 int offsetInFrame = pageNum * PAGE_SIZE; int offsetInMemory = frameNum * FRAME_SIZE + offsetInFrame; for (int i = 0; i < PAGE_SIZE; i++) { mainMemory[offsetInMemory + i] = secondaryMemory[offsetInFrame + i]; } pageTable[job * PAGE_NUM + pageNum].present = true; pageTable[job * PAGE_NUM + pageNum].frame = frameNum; } return pageTable[job * PAGE_NUM + pageNum].frame * FRAME_SIZE + offset; } int main() { // 初始化页表 for (int i = 0; i < MAX_JOB_FRAMES * PAGE_NUM; i++) { pageTable[i].present = false; } // 创建作业 vector<char> job(MAX_JOB_SIZE); for (int i = 0; i < MAX_JOB_SIZE; i++) { job[i] = rand() % 256; } // 测试虚拟地址转物理地址 int virtualAddress = rand() % MAX_JOB_SIZE; int physicalAddress = translateAddress(0, virtualAddress); cout << "Virtual address: " << virtualAddress << endl; cout << "Physical address: " << physicalAddress << endl; cout << "Data at physical address: " << (int)mainMemory[physicalAddress] << endl; return 0; } ``` 在上面的代码中,我们首先定义了一些常量,包括页大小、页数、物理块数、物理块大小、最大作业大小和每个作业占用的物理块数。 然后我们定义了页表项结构体,其中包括一个表示页面是否在内存中的布尔值和一个表示页面对应的物理块号的整数。接着我们定义了主存和辅存,用于存储作业数据和缺失的页面数据。我们还定义了一个哈希表用于存储页表信息。 接下来我们实现了地址转换函数 `translateAddress`,它接受一个作业号和一个虚拟地址作为输入,并返回对应的物理地址。在函数中,我们首先将虚拟地址转换成页号和偏移量,并检查对应的页面是否在内存中。如果没有在内存中,我们就需要进行缺页中断处理。具体来说,我们随机选择一个物理块,将其对应的页面写回到辅存中(如果需要的话),然后将缺失的页面从辅存中读入到该物理块中,并更新页表信息。最后,我们根据页表信息计算出对应的物理地址并返回。 最后,我们在主函数中创建了一个长度为 `MAX_JOB_SIZE` 的作业,并测试了地址转换函数。您可以根据需要进行更改和扩展。

相关推荐

最新推荐

recommend-type

模拟页式虚拟地址和缺页中断算法实验报告

处理缺页中断时使用LRU算法进行 实验具体包括:首先对给定的地址进行地址转换工作,若发生缺页则先进行缺页中断处理,然后再进行地址转换;最后编写主函数对所作工作进程测试。
recommend-type

数据转换/信号处理中的天线调谐器T形阻抗匹配网络参数估算

在给定VSWR门限值的条件下,定量分析了匹配网络中各元件的最小取值所必须满足的取值范围,得出了合理的估算值.对于决定网络匹配范围的各元件的最大取值,则依据天线输入阻抗的变化范围,给出了初步的估算值.通过对...
recommend-type

阶乘计算 编写程序,对给定的n(n≦100),

编写程序,对给定的n(n≦100),计算并输出k的阶乘k!(k=1,2,…,n)的全部有效数字。由于要求的整数可能大大超出一般整数的位数,程序用一维数组存储长整数,存储长整数数组的每个元素只存储长整数的一位数字。...
recommend-type

java实现十六进制字符unicode与中英文转换示例

在Java编程语言中,处理Unicode编码和十六进制字符转换是一项常见的任务,特别是在处理文本数据时。本示例探讨了如何使用Java实现从Unicode十六进制字符串到中英文字符的转换,以及反过来的过程。理解Unicode和UTF...
recommend-type

Java 类型相互转换byte[]类型,Blob类型详细介绍

在Java编程中,数据存储和传输常常涉及到不同类型的数据转换,特别是在数据库操作中,与二进制大数据相关的类型如`byte[]`(字节数组)和`Blob`(Binary Large Object)之间的转换尤为常见。本篇文章将详细讲解如何...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。