分页式存储管理系统中,知道页面大小为4KB,给定的逻辑地址为12008H,对应的物理块号为3,则它的物理地址为

时间: 2024-04-01 07:33:00 浏览: 16
由于页面大小为4KB,即2^12 Byte,因此一个页面可以存放2^12 / 2^2 = 2^10 个页表项,即1024个页表项。因此,逻辑地址的前20位(因为2^20 = 1MB)表示页号,后12位表示页内偏移。 给定的逻辑地址为12008H,二进制表示为0001 0010 0000 1000B,其中前20位为0001 0010 0000B,表示页号为18。物理块号为3,即该逻辑页对应的物理页为第4个物理页(因为物理块号从0开始计数),因此物理页号为3。 将物理页号和页内偏移拼接起来,得到物理地址为0000 0011 0000 1000B,即0x0308H。因此,该逻辑地址对应的物理地址为0x0308H。
相关问题

某分页存储管理系统中,页面大小为4kb,系统中的地址占16位,给定页面变换表如下表所

页面变换表: 页号 => 块号 0 => 3 1 => 7 2 => 4 3 => 2 在分页存储管理系统中,分页用于将进程的虚拟地址空间映射到物理内存中。页面大小为4kb,即2^12字节,地址为16位,即2^16个地址空间。 根据给定的页面变换表,可以看出页面号为0的页被映射到了块号为3的物理内存块上,页面号为1的页映射到了块号为7的物理内存块上,页面号为2的页映射到了块号为4的物理内存块上,页面号为3的页映射到了块号为2的物理内存块上。 对于一个16位的地址空间,前12位用来表示页面内的偏移量,后4位表示页面号。假设页面号为x,那么其真实地址为(块号 * 页面大小) + 页面偏移量。 例如,对于地址0x47a9,页面号为4,偏移量为0x7a9,对应的块号为2。因此,该地址对应的物理内存地址为2 * 4kb + 0x7a9 = 0x1fa9。 通过页面变换表和地址映射规则,系统能够有效地管理页面和物理内存之间的映射关系,实现了分页存储管理系统的地址转换和内存访问。

某分页系统中,页面大小为1KB,若程序的逻辑空间由4页构成,其0、1、2、3号页面对应的物理块号分别为3、6、9、1,则逻辑地址3075对应的物理地址为

由于页面大小为1KB,因此一个页面内可以存储1024个字节。因此,页面0的逻辑地址范围是0~1023,页面1的逻辑地址范围是1024~2047,以此类推。因此,逻辑地址3075属于页面3,即第3个页面的逻辑地址范围是3072~4095。 由题可知,页面3对应的物理块号是1,因此页面3存储在物理内存的第1个物理块中。假设物理块大小也是1KB,则物理块0的物理地址范围是0~1023,物理块1的物理地址范围是1024~2047,以此类推。 因此,逻辑地址3075对应的物理地址是: 物理地址 = 1 * 页面大小 + 3075 mod 页面大小 = 1 * 1024 + 3075 mod 1024 = 1024 + 27 = 1051 因此,逻辑地址3075对应的物理地址是1051。

相关推荐

最新推荐

recommend-type

操作系统 linux 请求分页 模拟内存管理实验报告java(内含源码)

通过实现一个操作系统的内存管理的模拟系统,观察内存空闲分区管理、内存分配和回收过程,了解内存管理技术等特点,掌握内存管理中的分配、回收和置换算法,加深对请求调页系统的原理和实现过程的理解。
recommend-type

分页存储--逻辑地址转物理地址练习题

分页存储--逻辑地址转物理地址,几道比较经典的练习题,在互联网校招中经常出现
recommend-type

模拟分页式存储管理中硬件的地址转换和缺页中断

分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。该程序是模拟存储管理的地址转换代码
recommend-type

操作系统-基本分页存储管理(内有代码)

本实验通过程序模拟操作系统的基本分页存储管理方式,进一步理解这一内存分配方式的原理和特点,加深对理论知识的掌握。
recommend-type

setuptools-33.1.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。