在分页存储管理系统中,页表如下所示。假设页面大小为1024字节,请尝试将逻辑地址1011、2150、4000、6012转换为相应的物理地址。 页号 0、1、2、3 块号 3 5 1 4

时间: 2023-12-28 08:06:40 浏览: 188
由于页面大小为1024字节,一个页面可以存放1024/4=256个字。因此,逻辑地址中的前10位表示页号,后10位表示偏移量。 将逻辑地址转换为物理地址的步骤如下: 1. 对于逻辑地址1011,页号为0,偏移量为1011-0\*1024=987。根据页表可知,页号0对应的块号为3,所以物理地址为3\*256+987=1235。 2. 对于逻辑地址2150,页号为2,偏移量为2150-2\*1024=102。根据页表可知,页号2对应的块号为1,所以物理地址为1\*256+102=358。 3. 对于逻辑地址4000,页号为3,偏移量为4000-3\*1024=904。根据页表可知,页号3对应的块号为4,所以物理地址为4\*256+904=2096。 4. 对于逻辑地址6012,页号为5,偏移量为6012-5\*1024=236。由于页表中没有页号为5的块号,说明该页不存在,因此无法将该逻辑地址转换为物理地址。
相关问题

若在一分页存储管理系统中,某作业的页表如下所示。已知页面大小为1024字节,试将逻辑地址1011,2148,4000,5012转化为相应的物理地址。 页号 物理块号 0 2 1 3 2 1 3 6

好的,我来解答您的问题。 根据题目所给的页表,可以得知该系统中共有 4 个物理块,每个物理块的大小为 1024 字节。根据题目所给的逻辑地址,需要将其转化为相应的物理地址。 对于逻辑地址 1011,其所在的页号为 0,对应的物理块号为 2,因此该逻辑地址对应的物理地址为:2 * 1024 + 1011 % 1024 = 3072 + 987 = 4059。 对于逻辑地址 2148,其所在的页号为 2,对应的物理块号为 1,因此该逻辑地址对应的物理地址为:1 * 1024 + 2148 % 1024 = 1024 + 1100 = 2124。 对于逻辑地址 4000,其所在的页号为 3,对应的物理块号为 6,因此该逻辑地址对应的物理地址为:6 * 1024 + 4000 % 1024 = 6144 + 904 = 7048。 对于逻辑地址 5012,其所在的页号为 4,但是页表中只有 4 个页表项,因此该逻辑地址所在的页面不在内存中,会发生页错误。 综上所述,逻辑地址 1011,2148,4000 对应的物理地址分别为 4059,2124,7048,逻辑地址 5012 会发生页错误。

一个分页存储管理系统中,页号长度为22比特,页内偏移为12比特。物理地址空间中,每个地址有32位。页表中,每个页表项的长度为32比特的整数倍。 (1)该系统中,进程的逻辑地址空间最大是多少?进程的每个页面有多少字节?页框号的长度是多少比特?(4分) (2)采用一级页表,每个进程的页表大小为多少字节?该系统是否需要启用二级页表,为什么?(4分

好的,我明白了,下面是我的回答: (1)进程的逻辑地址空间最大为 $2^{22}$ 个页面,即 $2^{22} \times 2^{12} = 2^{34}$ 个字节。 每个页面有 $2^{12}$ 个字节。 页框号的长度为 $32-12=20$ 比特。 (2)每个进程的页表大小为 $2^{22} \times 4 = 2^{24}$ 字节,其中 $2^{22}$ 个页表项,每个页表项长度为 4 字节(32 比特)。 该系统不需要启用二级页表,因为一级页表大小为 $2^{24}$ 字节已经足够存储所有的页表项。只有当一级页表大小无法存储所有的页表项时,才需要启用二级页表。
阅读全文

相关推荐

application/x-rar
一、 课程设计目的 本课程设计是学生学习完《计算机操作系统》课程后,进行的一次全面的综合训练,通过课程设计,让学生更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强学生的动手能力。 二、课程设计的内容 1、分页方式的地址换算 2、分段方式的地址换算 3、段页式的地址换算 三、程序运行 1、 分页式地址转换: 数据: 逻辑地址:223、页面大小:23 2、 分段式地址转换 数据: 逻辑地址段号:223、段内地址:23 3、 段页式地址换算 逻辑地址的段号:2、页号:3 四、程序源代码 #include #include int page(int A,int L ); int Segment(int sn,int sl); int SegPagt(int sn,int pn,int pd); typedef struct segtable { int segf[256]; int segl[256]; }segtable; struct segtable st; typedef struct segpagt { int segf[256]; int segl[256]; int ptl[256]; int pt[256]; int pf[256]; int pl; }segpagt; struct segpagt sp; int main() { int code; int pl,pa,sn,sd,pd,pn; //const int ptl ; int temp; do{ printf("----------------地址换算过程----------------------------\n\n"); printf(" 1.分页式地址换算\n"); printf(" 2.分段式地址换算\n"); printf(" 3.段页式地址换算\n"); printf(" 4.结束运行\n\n"); printf("----------------------------------------------------------\n"); printf("请输入您的选择:"); scanf("%d",&code); switch(code) { case 1:{ printf("注意:请演示设定页表长度小于\n"); printf("请输入换算的逻辑地址:\n"); scanf("%d",&pa); printf("页面大小(B):\n"); scanf("%d",&pl); page(pa,pl); }break; case 2:{ printf("请演示设定段表长度小于\n"); printf("请输入逻辑地址的段号:\n"); scanf("%d",&sn); printf("段内地址:\n"); scanf("%d",&sd); Segment(sn,sd); }break; case 3:{ printf("预设定段表长为,页面大小为\n"); printf("请输入逻辑地址的段号:\n"); scanf("%d",&sn); printf("页号:\n"); scanf("%d",&pn); printf("页内地址:\n"); scanf("%d",&pd); SegPagt(sn,pn,pd); }break; case 4:{}break; } }while (code<4); } int page(int A,int L) { int d,P,kd,i; int WD; int PT[256]; for(i=1;iL) printf("页号大于页表长度,越界中断\n\n");//如果页号大于页表长度,输出越界中段 else { printf("页号=逻辑地址/页面大小=%d,页内地址=逻辑地址%页面大小=%d\n",P,d);//输出页号和页内地址 kd=PT[P];//根据页号随机产生快号 printf("根据页号%d得到块号%d\n",P,kd); WD=kd*L+d;//计算物理地址的公式 printf("物理地址=块号%d*页面大小%d+页内地址%d\n",kd,L,d);//输出物理地址=块号*页面大小+页内地址 printf("逻辑地址%d换算后的物理地址为%d\n\n",A,WD);//输出物理地址的结果 return (0); } }

最新推荐

recommend-type

操作系统 linux 请求分页 模拟内存管理实验报告java(内含源码)

在本实验报告中,我们将重点讨论Linux操作系统中的请求分页内存管理,这是一个模拟实验,旨在帮助理解内存管理的基本概念和技术。 请求分页是现代操作系统中广泛采用的一种内存管理策略,它允许进程在需要时请求页...
recommend-type

分页存储--逻辑地址转物理地址练习题

分页存储是一种内存管理技术,它将主存划分为固定大小的块,称为页面,同时将进程的虚拟地址空间也划分为同样大小的页。在分页存储系统中,逻辑地址到物理地址的转换是通过页表来实现的。下面我们将深入探讨这个转换...
recommend-type

操作系统-基本分页存储管理(内有代码)

基本分页存储管理是操作系统中的一种常见的存储管理方式,它通过将内存分割成固定大小的块,然后将进程分配到这些块中,以提高内存的利用率和效率。 基本分页存储管理的原理是将内存分割成固定大小的块,然后将进程...
recommend-type

操作系统实验报告+源代码 基本分页存储管理

在本次实验中,学生通过编写源代码模拟了一个基本的分页存储管理系统。 分页存储管理是现代操作系统中常用的一种内存管理策略,它将进程的虚拟地址空间划分为固定大小的页,而物理内存被划分为同样大小的物理块。在...
recommend-type

基于java的贝儿米幼儿教育管理系统答辩PPT.pptx

基于java的贝儿米幼儿教育管理系统答辩PPT.pptx
recommend-type

Aspose资源包:转PDF无水印学习工具

资源摘要信息:"Aspose.Cells和Aspose.Words是两个非常强大的库,它们属于Aspose.Total产品家族的一部分,主要面向.NET和Java开发者。Aspose.Cells库允许用户轻松地操作Excel电子表格,包括创建、修改、渲染以及转换为不同的文件格式。该库支持从Excel 97-2003的.xls格式到最新***016的.xlsx格式,还可以将Excel文件转换为PDF、HTML、MHTML、TXT、CSV、ODS和多种图像格式。Aspose.Words则是一个用于处理Word文档的类库,能够创建、修改、渲染以及转换Word文档到不同的格式。它支持从较旧的.doc格式到最新.docx格式的转换,还包括将Word文档转换为PDF、HTML、XAML、TIFF等格式。 Aspose.Cells和Aspose.Words都有一个重要的特性,那就是它们提供的输出资源包中没有水印。这意味着,当开发者使用这些资源包进行文档的处理和转换时,最终生成的文档不会有任何水印,这为需要清洁输出文件的用户提供了极大的便利。这一点尤其重要,在处理敏感文档或者需要高质量输出的企业环境中,无水印的输出可以帮助保持品牌形象和文档内容的纯净性。 此外,这些资源包通常会标明仅供学习使用,切勿用作商业用途。这是为了避免违反Aspose的使用协议,因为Aspose的产品虽然是商业性的,但也提供了免费的试用版本,其中可能包含了特定的限制,如在最终输出的文档中添加水印等。因此,开发者在使用这些资源包时应确保遵守相关条款和条件,以免产生法律责任问题。 在实际开发中,开发者可以通过NuGet包管理器安装Aspose.Cells和Aspose.Words,也可以通过Maven在Java项目中进行安装。安装后,开发者可以利用这些库提供的API,根据自己的需求编写代码来实现各种文档处理功能。 对于Aspose.Cells,开发者可以使用它来完成诸如创建电子表格、计算公式、处理图表、设置样式、插入图片、合并单元格以及保护工作表等操作。它也支持读取和写入XML文件,这为处理Excel文件提供了更大的灵活性和兼容性。 而对于Aspose.Words,开发者可以利用它来执行文档格式转换、读写文档元数据、处理文档中的文本、格式化文本样式、操作节、页眉、页脚、页码、表格以及嵌入字体等操作。Aspose.Words还能够灵活地处理文档中的目录和书签,这让它在生成复杂文档结构时显得特别有用。 在使用这些库时,一个常见的场景是在企业应用中,需要将报告或者数据导出为PDF格式,以便于打印或者分发。这时,使用Aspose.Cells和Aspose.Words就可以实现从Excel或Word格式到PDF格式的转换,并且确保输出的文件中不包含水印,这提高了文档的专业性和可信度。 需要注意的是,虽然Aspose的产品提供了很多便利的功能,但它们通常是付费的。用户需要根据自己的需求购买相应的许可证。对于个人用户和开源项目,Aspose有时会提供免费的许可证。而对于商业用途,用户则需要购买商业许可证才能合法使用这些库的所有功能。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言高性能计算秘诀】:代码优化,提升分析效率的专家级方法

![R语言](https://www.lecepe.fr/upload/fiches-formations/visuel-formation-246.jpg) # 1. R语言简介与计算性能概述 R语言作为一种统计编程语言,因其强大的数据处理能力、丰富的统计分析功能以及灵活的图形表示法而受到广泛欢迎。它的设计初衷是为统计分析提供一套完整的工具集,同时其开源的特性让全球的程序员和数据科学家贡献了大量实用的扩展包。由于R语言的向量化操作以及对数据框(data frames)的高效处理,使其在处理大规模数据集时表现出色。 计算性能方面,R语言在单线程环境中表现良好,但与其他语言相比,它的性能在多
recommend-type

在构建视频会议系统时,如何通过H.323协议实现音视频流的高效传输,并确保通信的稳定性?

要通过H.323协议实现音视频流的高效传输并确保通信稳定,首先需要深入了解H.323协议的系统结构及其组成部分。H.323协议包括音视频编码标准、信令控制协议H.225和会话控制协议H.245,以及数据传输协议RTP等。其中,H.245协议负责控制通道的建立和管理,而RTP用于音视频数据的传输。 参考资源链接:[H.323协议详解:从系统结构到通信流程](https://wenku.csdn.net/doc/2jtq7zt3i3?spm=1055.2569.3001.10343) 在构建视频会议系统时,需要合理配置网守(Gatekeeper)来提供地址解析和准入控制,保证通信安全和地址管理
recommend-type

Go语言控制台输入输出操作教程

资源摘要信息:"在Go语言(又称Golang)中,控制台的输入输出是进行基础交互的重要组成部分。Go语言提供了一组丰富的库函数,特别是`fmt`包,来处理控制台的输入输出操作。`fmt`包中的函数能够实现格式化的输入和输出,使得程序员可以轻松地在控制台显示文本信息或者读取用户的输入。" 1. fmt包的使用 Go语言标准库中的`fmt`包提供了许多打印和解析数据的函数。这些函数可以让我们在控制台上输出信息,或者从控制台读取用户的输入。 - 输出信息到控制台 - Print、Println和Printf是基本的输出函数。Print和Println函数可以输出任意类型的数据,而Printf可以进行格式化输出。 - Sprintf函数可以将格式化的字符串保存到变量中,而不是直接输出。 - Fprint系列函数可以将输出写入到`io.Writer`接口类型的变量中,例如文件。 - 从控制台读取信息 - Scan、Scanln和Scanf函数可以读取用户输入的数据。 - Sscan、Sscanln和Sscanf函数则可以从字符串中读取数据。 - Fscan系列函数与上面相对应,但它们是将输入读取到实现了`io.Reader`接口的变量中。 2. 输入输出的格式化 Go语言的格式化输入输出功能非常强大,它提供了类似于C语言的`printf`和`scanf`的格式化字符串。 - Print函数使用格式化占位符 - `%v`表示使用默认格式输出值。 - `%+v`会包含结构体的字段名。 - `%#v`会输出Go语法表示的值。 - `%T`会输出值的数据类型。 - `%t`用于布尔类型。 - `%d`用于十进制整数。 - `%b`用于二进制整数。 - `%c`用于字符(rune)。 - `%x`用于十六进制整数。 - `%f`用于浮点数。 - `%s`用于字符串。 - `%q`用于带双引号的字符串。 - `%%`用于百分号本身。 3. 示例代码分析 在文件main.go中,可能会包含如下代码段,用于演示如何在Go语言中使用fmt包进行基本的输入输出操作。 ```go package main import "fmt" func main() { var name string fmt.Print("请输入您的名字: ") fmt.Scanln(&name) // 读取一行输入并存储到name变量中 fmt.Printf("你好, %s!\n", name) // 使用格式化字符串输出信息 } ``` 以上代码首先通过`fmt.Print`函数提示用户输入名字,并等待用户从控制台输入信息。然后`fmt.Scanln`函数读取用户输入的一行信息(包括空格),并将其存储在变量`name`中。最后,`fmt.Printf`函数使用格式化字符串输出用户的名字。 4. 代码注释和文档编写 在README.txt文件中,开发者可能会提供关于如何使用main.go代码的说明,这可能包括代码的功能描述、运行方法、依赖关系以及如何处理常见的输入输出场景。这有助于其他开发者理解代码的用途和操作方式。 总之,Go语言为控制台输入输出提供了强大的标准库支持,使得开发者能够方便地处理各种输入输出需求。通过灵活运用fmt包中的各种函数,可以轻松实现程序与用户的交互功能。