net = nn.Sequential( nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(), nn.AvgPool2d(kernel_size=2, stride=2), nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(), nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(), nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(), nn.Linear(84, 10)) # 和以前一样,再Fashin-MNIST数据集上训练网络,与6.6几乎完全相同,区别在于学习率大得多 lr, num_epochs, batch_size = 1.0, 10, 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu()) d2l.plt.show() # 从第一个批量规范化层中学到的拉伸参数gamma和偏移参数beta print(net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,)))

时间: 2023-10-04 10:12:30 浏览: 63
这段代码定义了一个包含卷积层、批量规范化层、池化层和全连接层的神经网络,并使用 Fashion-MNIST 数据集对其进行训练。在训练后,代码打印了从第一个批量规范化层中学到的拉伸参数 gamma 和偏移参数 beta。 具体来说,`net[1]` 表示神经网络中的第二个层,即第一个批量规范化层。`net[1].gamma` 表示该层学到的拉伸参数,`net[1].beta` 表示该层学到的偏移参数。这两个参数的形状都是 `(6,)`,因为该批量规范化层有 6 个特征图。通过 `reshape((-1,))` 将参数的形状变成了 1 维,便于打印输出。
相关问题

import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def init(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).init() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def init(self, cfg): super(DPN, self).init() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + 1 layers = [] for i,stride in (strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg)基于这个程序改成对摄像头采集的图像检测与分类输出坐标、大小和种类

首先,需要将输入的图像大小和通道数进行调整以适应模型输入。假设模型需要的输入大小为224x224,通道数为3,则可以使用OpenCV库中的resize函数将摄像头采集的图像缩放至指定大小。同时,需要将图像转换成PyTorch中的Tensor格式,并对像素值进行归一化操作。 代码如下: ```python import cv2 import numpy as np # 调整图像大小和通道数 img_size = (224, 224) img_channels = 3 # 初始化摄像头 cap = cv2.VideoCapture(0) while True: # 读取摄像头图像 ret, frame = cap.read() if not ret: break # 缩放图像 frame = cv2.resize(frame, img_size) # 转换为Tensor格式,并进行归一化 frame = np.transpose(frame, (2, 0, 1)).astype(np.float32) / 255.0 frame = np.expand_dims(frame, axis=0) frame = torch.from_numpy(frame) # 调用模型进行预测 output = model(frame) # TODO: 解析输出结果,得到分类、坐标和大小信息 # 显示图像 cv2.imshow('frame', frame) # 按下q键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头 cap.release() cv2.destroyAllWindows() ``` 接下来,需要解析模型的输出结果,得到分类、坐标和大小信息。由于代码中没有给出模型输出的具体格式,这里需要根据模型输出结果进行相应的解析。 假设模型输出一个长度为4的向量,其中前两个元素表示物体的左上角坐标,后两个元素表示物体的宽度和高度,第三个元素表示物体的类别。则可以使用以下代码进行解析: ```python # 解析模型输出结果 x, y, w, h, cls = output[0] # 计算物体的右下角坐标 x2 = x + w y2 = y + h # 显示分类、坐标和大小信息 class_names = ['class1', 'class2', 'class3', 'class4', 'class5'] print('Class:', class_names[cls]) print('Position: ({}, {})-({}, {})'.format(x, y, x2, y2)) print('Size: {}x{}'.format(w, h)) ``` 最后,将以上代码整合到一起,即可完成对摄像头采集的图像进行检测与分类输出坐标、大小和种类的任务。 完整代码如下: ```python import torch import torch.nn as nn import torch.nn.functional as F import cv2 import numpy as np class Bottleneck(nn.Module): def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).__init__() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes * dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes * dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes * dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes * dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes * self.dense_depth out = torch.cat([x[:,:d,:,:], out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def __init__(self, cfg): super(DPN, self).__init__() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3] * (num_blocks[3] + 1) * dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for i, stride in enumerate(strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96, 192, 384, 768), 'out_planes': (256, 512, 1024, 2048), 'num_blocks': (3, 4, 20, 3), 'dense_depth': (16, 32, 24, 128) } return DPN(cfg) # 调整图像大小和通道数 img_size = (224, 224) img_channels = 3 # 初始化模型 model = DPN92() model.load_state_dict(torch.load('dpn92.pth', map_location='cpu')) model.eval() # 初始化摄像头 cap = cv2.VideoCapture(0) while True: # 读取摄像头图像 ret, frame = cap.read() if not ret: break # 缩放图像 frame = cv2.resize(frame, img_size) # 转换为Tensor格式,并进行归一化 frame = np.transpose(frame, (2, 0, 1)).astype(np.float32) / 255.0 frame = np.expand_dims(frame, axis=0) frame = torch.from_numpy(frame) # 调用模型进行预测 output = model(frame) # 解析模型输出结果 x, y, w, h, cls = output[0] x, y, w, h, cls = int(x), int(y), int(w), int(h), int(cls) # 计算物体的右下角坐标 x2 = x + w y2 = y + h # 显示分类、坐标和大小信息 class_names = ['class1', 'class2', 'class3', 'class4', 'class5'] print('Class:', class_names[cls]) print('Position: ({}, {})-({}, {})'.format(x, y, x2, y2)) print('Size: {}x{}'.format(w, h)) # 在图像上绘制矩形框 cv2.rectangle(frame, (x, y), (x2, y2), (0, 255, 0), 2) # 显示图像 cv2.imshow('frame', frame) # 按下q键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头 cap.release() cv2.destroyAllWindows() ```

# New module: utils.pyimport torchfrom torch import nnclass ConvBlock(nn.Module): """A convolutional block consisting of a convolution layer, batch normalization layer, and ReLU activation.""" def __init__(self, in_chans, out_chans, drop_prob): super().__init__() self.conv = nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_chans) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout2d(p=drop_prob) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dropout(x) return x# Refactored U-Net modelfrom torch import nnfrom utils import ConvBlockclass UnetModel(nn.Module): """PyTorch implementation of a U-Net model.""" def __init__(self, in_chans, out_chans, chans, num_pool_layers, drop_prob, pu_args=None): super().__init__() PUPS.__init__(self, *pu_args) self.in_chans = in_chans self.out_chans = out_chans self.chans = chans self.num_pool_layers = num_pool_layers self.drop_prob = drop_prob # Calculate input and output channels for each ConvBlock ch_list = [chans] + [chans * 2 ** i for i in range(num_pool_layers - 1)] in_chans_list = [in_chans] + [ch_list[i] for i in range(num_pool_layers - 1)] out_chans_list = ch_list[::-1] # Create down-sampling layers self.down_sample_layers = nn.ModuleList() for i in range(num_pool_layers): self.down_sample_layers.append(ConvBlock(in_chans_list[i], out_chans_list[i], drop_prob)) # Create up-sampling layers self.up_sample_layers = nn.ModuleList() for i in range(num_pool_layers - 1): self.up_sample_layers.append(ConvBlock(out_chans_list[i], out_chans_list[i + 1] // 2, drop_prob)) self.up_sample_layers.append(ConvBlock(out_chans_list[-1], out_chans_list[-1], drop_prob)) # Create final convolution layer self.conv2 = nn.Sequential( nn.Conv2d(out_chans_list[-1], out_chans_list[-1] // 2, kernel_size=1), nn.Conv2d(out_chans_list[-1] // 2, out_chans, kernel_size=1), nn.Conv2d(out_chans, out_chans, kernel_size=1), ) def forward(self, x): # Down-sampling path encoder_outs = [] for layer in self.down_sample_layers: x = layer(x) encoder_outs.append(x) x = nn.MaxPool2d(kernel_size=2)(x) # Bottom layer x = self.conv(x) # Up-sampling path for i, layer in enumerate(self.up_sample_layers): x = nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) x = torch.cat([x, encoder_outs[-(i + 1)]], dim=1) x = layer(x) # Final convolution layer x = self.conv2(x) return x

这里给出了一个 PyTorch 实现的 U-Net 模型,并且对代码进行了重构: 1. 将 ConvBlock 提取到了 utils.py 中,以便在 U-Net 中复用。 2. 在 U-Net 模型的 forward 方法中,使用了 ModuleList 对 down-sampling 和 up-sampling 层进行了封装,使得代码更加简洁和易于扩展。 3. 使用了 nn.functional.interpolate 对 feature map 进行了上采样,避免了使用 nn.ConvTranspose2d 带来的一些问题。 4. 在最后的卷积层中,使用了 nn.Sequential 对多个卷积层进行了封装,使得代码更加简洁。 这些重构都是为了提高代码的可读性、可维护性和可扩展性,使得代码更加清晰,易于理解和修改。

相关推荐

最新推荐

recommend-type

grpcio-1.63.0-cp38-cp38-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

SQLyog-13.1.3-0.x86Community.exe

SQLyog-13.1.3-0.x86Community
recommend-type

VB自动出题题库系统设计(源代码+系统).rar

计算机专业毕业设计VB精品论文资源
recommend-type

debugpy-1.0.0b2-cp35-cp35m-manylinux1_i686.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

实战自学python如何成为大佬(目录):https://blog.csdn.net/weixin-67859959/artic

实战自学python如何成为大佬(目录):https://blog.csdn.net/weixin-67859959/artic
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。