mobilenetv1代码pytorch

时间: 2023-05-31 20:01:53 浏览: 63
### 回答1: Mobilenetv1是一种轻量级的卷积神经网络,适用于移动设备和嵌入式设备。在PyTorch中,可以使用torchvision.models.mobilenet_v1来加载预训练的模型,也可以使用该模型的代码进行自定义训练和推理。以下是一个简单的Mobilenetv1代码示例: ``` import torch import torch.nn as nn import torch.nn.functional as F class MobileNetV1(nn.Module): def __init__(self, num_classes=100): super(MobileNetV1, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(32) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(128) self.conv4 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False) self.bn4 = nn.BatchNorm2d(128) self.conv5 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False) self.bn5 = nn.BatchNorm2d(256) self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False) self.bn6 = nn.BatchNorm2d(256) self.conv7 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False) self.bn7 = nn.BatchNorm2d(512) self.conv8 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn8 = nn.BatchNorm2d(512) self.conv9 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn9 = nn.BatchNorm2d(512) self.conv10 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn10 = nn.BatchNorm2d(512) self.conv11 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn11 = nn.BatchNorm2d(512) self.conv12 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False) self.bn12 = nn.BatchNorm2d(1024) self.conv13 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False) self.bn13 = nn.BatchNorm2d(1024) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(1024, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.conv3(x) x = self.bn3(x) x = self.relu(x) x = self.conv4(x) x = self.bn4(x) x = self.relu(x) x = self.conv5(x) x = self.bn5(x) x = self.relu(x) x = self.conv6(x) x = self.bn6(x) x = self.relu(x) x = self.conv7(x) x = self.bn7(x) x = self.relu(x) x = self.conv8(x) x = self.bn8(x) x = self.relu(x) x = self.conv9(x) x = self.bn9(x) x = self.relu(x) x = self.conv10(x) x = self.bn10(x) x = self.relu(x) x = self.conv11(x) x = self.bn11(x) x = self.relu(x) x = self.conv12(x) x = self.bn12(x) x = self.relu(x) x = self.conv13(x) x = self.bn13(x) x = self.relu(x) x = self.avgpool(x) x = x.view(x.size(), -1) x = self.fc(x) return x ``` 在这个代码中,我们定义了一个名为MobileNetV1的类,它继承自nn.Module。在__init__函数中,我们定义了网络的各个层,包括卷积层、批归一化层和ReLU激活函数。在forward函数中,我们按照顺序将输入x传递到各个层中,并最终输出分类结果。这个代码可以用于自定义训练和推理,也可以作为torchvision.models.mobilenet_v1的基础代码进行修改和扩展。 ### 回答2: MobileNet V1是一种轻量级深度学习模型,被广泛应用于移动设备和嵌入式设备上进行图像分类任务。在PyTorch中,我们可以使用现成的MobileNet V1代码,快速搭建模型并进行训练和预测。 MobileNet V1的PyTorch代码实现,可以在PyTorch的官方Github仓库中找到。该代码库提供了两种不同版本的MobileNet V1模型,包括预先训练好的模型和用于自定义训练的模型。这些代码使用了PyTorch的函数和类,以及提供了许多用于优化和调整模型的工具。 MobileNet V1代码使用了深度可分离卷积(Depthwise Separable Convolution)来减少模型的计算和内存需求。这种卷积以一种新颖的方式处理特征图,将必要的计算分散到每个通道上。此外,代码还使用了全局平均池化层,将每个特征图替换为其平均值,从而减少了特征图的大小和维度。 使用PyTorch的MobileNet V1代码非常简单。您只需要调用相应的函数来定义和构建模型,并在训练和预测时向其提供相应的输入和输出张量即可。该代码也提供了各种用于数据增强、优化和调整模型的工具,方便用户进行优化和调整。 综上所述,MobileNet V1的PyTorch代码是一种功能强大、易于使用的深度学习工具,它能够在移动设备和嵌入式设备上快速地实现图像分类任务。无论您是初学者还是有经验的深度学习专业人员,该代码库都是一个必不可少的工具。 ### 回答3: MobileNetV1是一款具有高效网络架构的深度学习模型,它可以用于图像分类、目标检测等应用场景。该模型特别适用于具有限制计算资源的移动设备。 在PyTorch中,MobileNetV1代码可以通过下面的方式进行实现: 1. 安装PyTorch库,并导入需要使用的模块: ``` import torch import torch.nn as nn import torch.nn.functional as F ``` 2. 定义MobileNetV1中的基本模块: ``` class ConvBNReLU(nn.Module): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): super(ConvBNReLU, self).__init__() padding = (kernel_size - 1) // 2 self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False) self.bn = nn.BatchNorm2d(out_planes) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x ``` 3. 定义MobileNetV1的主体结构: ``` class MobileNetV1(nn.Module): def __init__(self, num_classes=1000): super(MobileNetV1, self).__init__() self.conv1 = ConvBNReLU(3, 32, stride=2) self.dw1 = nn.Sequential( ConvBNReLU(32, 32, groups=32), nn.Conv2d(32, 64, 1, 1, 0, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), ) self.dw2 = nn.Sequential( ConvBNReLU(64, 64, stride=2, groups=64), nn.Conv2d(64, 128, 1, 1, 0, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), ) self.dw3 = nn.Sequential( ConvBNReLU(128, 128, stride=2, groups=128), nn.Conv2d(128, 256, 1, 1, 0, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), ) self.dw4 = nn.Sequential( ConvBNReLU(256, 256, stride=2, groups=256), nn.Conv2d(256, 512, 1, 1, 0, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d(1) ) self.linear = nn.Linear(512, num_classes) def forward(self, x): x = self.conv1(x) x = self.dw1(x) x = self.dw2(x) x = self.dw3(x) x = self.dw4(x) x = x.view(x.size(0), -1) x = self.linear(x) return x ``` 在上述代码中,MobileNetV1的主体结构由5个“深度可分离卷积”组成。这些卷积层的参数量很小,并且可以提高计算效率。每个“深度可分离卷积”由一个深度卷积和一个1×1卷积层组成。 最后,使用MobileNetV1可以进行图像分类任务训练,示例如下: ``` # create a MobileNetV1 model model = MobileNetV1(num_classes=10) # define a loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # train the model for epoch in range(10): for i, (images, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}' .format(epoch+1, 10, i+1, len(train_loader), loss.item())) # test the model with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the model on the test images: {} %'.format(100 * correct / total)) ``` 在这个例子中,我们定义了一个包含10类的图像分类任务。通过使用PyTorch实现的MobileNetV1模型,我们可以训练并测试该模型在这个任务上的性能。

相关推荐

以下是一个简单的 MobileNetV1 的 PyTorch 代码,用于训练 CIFAR10 数据集: python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 定义 MobileNetV1 模型 class MobileNetV1(nn.Module): def __init__(self, num_classes=10): super(MobileNetV1, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=True), nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=True), nn.AvgPool2d(2) ) self.classifier = nn.Linear(1024, num_classes) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x # 加载 CIFAR10 数据集 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) # 训练模型 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") net = MobileNetV1().to(device) for epoch in range(200): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 print('Finished Training') 希望这个代码对你有所帮助!
MobilenetV3的PyTorch实现量化可以通过使用PyTorch的量化工具来实现。量化是将浮点模型转换为定点模型的过程,可以减少模型的存储空间和计算量,同时保持模型的准确性。在量化过程中,需要添加QuantStub()和DeQuantStub()来确保推理时的正确性。 首先,加载MobilenetV3模型并将其转移到CPU上进行推理。可以使用以下代码加载模型和权重: model = MobileNetV3_Large(2).to(device) checkpoint = torch.load(weights, map_location=device) model.load_state_dict(checkpoint) model.to('cpu').eval() 接下来,使用PyTorch的量化工具对模型进行量化。可以使用torch.quantization.quantize_dynamic方法来实现动态量化。以下是一个示例代码片段,展示了如何对模型进行动态量化: import torch.quantization # 创建一个量化配置 quantization_config = torch.quantization.get_default_qconfig('fbgemm') # 将模型转换为量化模型 quantized_model = torch.quantization.quantize_dynamic( model, # 原始模型 {torch.nn.Linear}, # 需要量化的模块类型 dtype=torch.qint8, # 量化后的数据类型 qconfig_spec=quantization_config # 量化配置 ) # 打印量化后的模型 print(quantized_model) 在上述代码中,我们首先创建了一个量化配置,然后使用torch.quantization.quantize_dynamic方法将模型转换为量化模型。我们指定了需要量化的模块类型为torch.nn.Linear,并将量化后的数据类型设置为torch.qint8。 通过以上步骤,你可以实现MobilenetV3的PyTorch实现量化。请注意,量化过程可能会导致一定的精度损失,因此在量化之前应该对模型进行充分的训练和验证。 #### 引用[.reference_title] - *1* [pytorch的量化Quantization](https://blog.csdn.net/qq_29007291/article/details/124898605)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [详解pytorch动态量化](https://blog.csdn.net/qq_43800119/article/details/125748669)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [pytorch FX模型静态量化](https://blog.csdn.net/Y_snower/article/details/125962912)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
MobileNetV2是一种轻量级的深度神经网络模型,在计算资源受限的移动设备上具有较好的性能。在PyTorch中,我们可以通过使用torchvision库来实现MobileNetV2模型的训练和预测。 首先,我们需要安装PyTorch和torchvision库,可以使用以下命令进行安装: pip install torch torchvision 接下来,我们可以使用以下代码加载MobileNetV2模型的预训练权重: import torchvision.models as models # 加载预训练权重 model = models.mobilenet_v2(pretrained=True) 加载预训练权重后,我们可以在移动设备上使用该模型进行图像分类或特征提取。例如,我们可以使用以下代码对图像进行分类: import torch import torchvision.transforms as transforms from PIL import Image # 加载图像,并进行预处理 image_path = 'image.jpg' input_image = Image.open(image_path).convert('RGB') transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) input_tensor = transform(input_image) input_batch = input_tensor.unsqueeze(0) # 使用预训练模型进行图像分类 model.eval() with torch.no_grad(): output = model(input_batch) # 加载ImageNet标签,并打印预测结果 labels_path = 'imagenet_labels.txt' with open(labels_path) as f: labels = f.readlines() _, predicted_idx = torch.max(output, 1) predicted_label = labels[predicted_idx.item()] print(predicted_label) 在这个例子中,需要先安装PIL库(pip install pillow)。我们使用了默认的ImageNet标签文件'imagenet_labels.txt',可以根据需要自行替换。 以上是使用PyTorch实现MobileNetV2模型的代码和预训练模型的介绍。MobileNetV2的轻量化结构可以在移动设备上快速、高效地进行图像分类和特征提取,具有广泛的应用前景。
MobileNetV3是一种高效的神经网络架构,可用于图像识别和图像分类任务。它是MobileNetV2的改进版本,具有更好的性能和更少的计算量。 MobileNetV3的代码实现主要包括网络架构定义、模型训练和模型推理三个部分。 首先,在网络架构定义部分,需要定义网络的各个层和操作。MobileNetV3使用了一种叫做“轻量化候选策略”的方法,通过选择适当的候选操作来构建网络。这种方法将网络的计算量和参数数量减少到最小,并且保持高准确率。在定义网络时,需要按照论文中的描述选择合适的操作和超参数。 其次,在模型训练部分,可以使用常见的深度学习框架如TensorFlow或PyTorch来训练模型。训练数据通常是一组带有标签的图像,可以选择合适的损失函数和优化算法来进行训练。在训练过程中,需要根据数据集的大小和计算资源的限制来选择合适的训练策略。 最后,在模型推理部分,可以使用训练好的模型进行图像识别或分类任务。将输入图像传入模型,经过前向传播计算得到输出结果。MobileNetV3的推理速度非常快,适合在移动设备上部署和使用。 总结来说,MobileNetV3是一种高效的神经网络架构,其代码实现主要包括网络架构定义、模型训练和模型推理三个部分。通过选择合适的操作和超参数,用训练数据进行模型训练,最后使用训练好的模型进行推理,可以实现高效的图像识别和分类。
这里是使用PyTorch实现的MobileNetV2代码示例: python import torch.nn as nn class MobileNetV2(nn.Module): def __init__(self, num_classes=1000, input_size=224): super(MobileNetV2, self).__init__() self.num_classes = num_classes self.input_size = input_size self.features = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 64, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 96, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(96), nn.ReLU(inplace=True), nn.Conv2d(96, 256, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 192, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(192), nn.ReLU(inplace=True), nn.Conv2d(192, 512, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=True), nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d((1, 1)), ) self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(1024, self.num_classes), ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x 此代码实现了MobileNetV2模型,包括输入大小和分类数。该模型的特征提取器由一系列卷积层和批归一化层组成,带有ReLU激活函数。分类器由一个dropout层和一个全连接层组成。在前向传递过程中,输入图像首先经过特征提取器,然后通过分类器输出预测结果。
以下是使用PyTorch实现MobileNetV3的代码: python import torch import torch.nn as nn import torch.nn.functional as F class Hswish(nn.Module): def __init__(self, inplace=True): super(Hswish, self).__init__() self.inplace = inplace def forward(self, x): if self.inplace: return x.mul_(F.relu6(x + 3., inplace=True)) / 6. else: return F.relu6(x + 3.) * x / 6. class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): if self.inplace: return F.relu6(x + 3., inplace=True) / 6. else: return F.relu6(x + 3.) / 6. class SEModule(nn.Module): def __init__(self, in_channels, reduction_ratio=4): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(in_channels, in_channels // reduction_ratio, kernel_size=1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(in_channels // reduction_ratio, in_channels, kernel_size=1, bias=False) self.hsigmoid = Hsigmoid() def forward(self, x): module_input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.hsigmoid(x) return module_input * x class MobileNetV3Block(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, use_se, activation): super(MobileNetV3Block, self).__init__() self.use_se = use_se self.activation = activation padding = (kernel_size - 1) // 2 self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(in_channels) self.conv2 = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=in_channels, bias=False) self.bn2 = nn.BatchNorm2d(in_channels) self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(out_channels) if use_se: self.se = SEModule(out_channels) if activation == 'relu': self.activation_fn = nn.ReLU(inplace=True) elif activation == 'hswish': self.activation_fn = Hswish(inplace=True) def forward(self, x): module_input = x x = self.conv1(x) x = self.bn1(x) x = self.activation_fn(x) x = self.conv2(x) x = self.bn2(x) x = self.activation_fn(x) x = self.conv3(x) x = self.bn3(x) if self.use_se: x = self.se(x) x += module_input return x class MobileNetV3Large(nn.Module): def __init__(self, num_classes=1000): super(MobileNetV3Large, self).__init__() # Settings for feature extraction part self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.hs1 = Hswish() self.block1 = MobileNetV3Block(16, 16, kernel_size=3, stride=1, use_se=False, activation='relu') self.block2 = MobileNetV3Block(16, 24, kernel_size=3, stride=2, use_se=False, activation='relu') self.block3 = MobileNetV3Block(24, 24, kernel_size=3, stride=1, use_se=False, activation='relu') self.block4 = MobileNetV3Block(24, 40, kernel_size=5, stride=2, use_se=True, activation='relu') self.block5 = MobileNetV3Block(40, 40, kernel_size=5, stride=1, use_se=True, activation='relu') self.block6 = MobileNetV3Block(40, 40, kernel_size=5, stride=1, use_se=True, activation='relu') self.block7 = MobileNetV3Block(40, 80, kernel_size=3, stride=2, use_se=False, activation='hswish') self.block8 = MobileNetV3Block(80, 80, kernel_size=3, stride=1, use_se=False, activation='hswish') self.block9 = MobileNetV3Block(80, 80, kernel_size=3, stride=1, use_se=False, activation='hswish') self.block10 = MobileNetV3Block(80, 112, kernel_size=3, stride=1, use_se=True, activation='hswish') self.block11 = MobileNetV3Block(112, 112, kernel_size=3, stride=1, use_se=True, activation='hswish') self.block12 = MobileNetV3Block(112, 160, kernel_size=5, stride=2, use_se=True, activation='hswish') self.block13 = MobileNetV3Block(160, 160, kernel_size=5, stride=1, use_se=True, activation='hswish') self.block14 = MobileNetV3Block(160, 160, kernel_size=5, stride=1, use_se=True, activation='hswish') # Settings for classification part self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False) self.bn2 = nn.BatchNorm2d(960) self.hs2 = Hswish() self.avgpool = nn.AdaptiveAvgPool2d(1) self.dropout = nn.Dropout(p=0.2, inplace=True) self.fc = nn.Linear(960, num_classes) # Weight initialization self._initialize_weights() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.hs1(x) x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.block4(x) x = self.block5(x) x = self.block6(x) x = self.block7(x) x = self.block8(x) x = self.block9(x) x = self.block10(x) x = self.block11(x) x = self.block12(x) x = self.block13(x) x = self.block14(x) x = self.conv2(x) x = self.bn2(x) x = self.hs2(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.fc(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) 这是MobileNetV3的大型版本,你也可以根据需要修改输入和输出通道数等参数来创建其他版本的MobileNetV3。
以下是使用 PyTorch 实现 MobileNetV3 的代码示例: python import torch.nn as nn import torch.nn.functional as F class MobileNetV3(nn.Module): def __init__(self, num_classes=1000, width_mult=1.0): super(MobileNetV3, self).__init__() self.in_channels = int(16 * width_mult) self.conv1 = nn.Conv2d(3, self.in_channels, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.in_channels) self.hs1 = nn.Hardswish() self.bottlenecks = nn.Sequential( Bottleneck(self.in_channels, int(16 * width_mult), 3, 1, False, False), Bottleneck(int(16 * width_mult), int(24 * width_mult), 3, 2, False, False), Bottleneck(int(24 * width_mult), int(24 * width_mult), 3, 1, False, False), Bottleneck(int(24 * width_mult), int(40 * width_mult), 5, 2, True, False), Bottleneck(int(40 * width_mult), int(40 * width_mult), 5, 1, True, False), Bottleneck(int(40 * width_mult), int(40 * width_mult), 5, 1, True, False), Bottleneck(int(40 * width_mult), int(80 * width_mult), 3, 2, False, True), Bottleneck(int(80 * width_mult), int(80 * width_mult), 3, 1, False, True), Bottleneck(int(80 * width_mult), int(80 * width_mult), 3, 1, False, True), Bottleneck(int(80 * width_mult), int(112 * width_mult), 5, 1, True, True), Bottleneck(int(112 * width_mult), int(112 * width_mult), 5, 1, True, True), Bottleneck(int(112 * width_mult), int(160 * width_mult), 5, 2, True, True), Bottleneck(int(160 * width_mult), int(160 * width_mult), 5, 1, True, True), Bottleneck(int(160 * width_mult), int(160 * width_mult), 5, 1, True, True), ) self.conv2 = nn.Conv2d(int(160 * width_mult), int(960 * width_mult), kernel_size=1, stride=1, bias=False) self.bn2 = nn.BatchNorm2d(int(960 * width_mult)) self.hs2 = nn.Hardswish() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout(p=0.2, inplace=True) self.fc = nn.Linear(int(960 * width_mult), num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.hs1(x) x = self.bottlenecks(x) x = self.conv2(x) x = self.bn2(x) x = self.hs2(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.fc(x) return x class Bottleneck(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, use_se, use_hs): super(Bottleneck, self).__init__() self.stride = stride self.use_se = use_se self.use_hs = use_hs mid_channels = int(in_channels / 4) self.conv1 = nn.Conv2d(in_channels, mid_channels, kernel_size=1, stride=1, bias=False) self.bn1 = nn.BatchNorm2d(mid_channels) self.hs1 = nn.Hardswish() if use_hs else nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(mid_channels, mid_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=mid_channels, bias=False) self.bn2 = nn.BatchNorm2d(mid_channels) self.hs2 = nn.Hardswish() if use_hs else nn.ReLU(inplace=True) if use_se: self.se = SEBlock(mid_channels) self.conv3 = nn.Conv2d(mid_channels, out_channels, kernel_size=1, stride=1, bias=False) self.bn3 = nn.BatchNorm2d(out_channels) self.hs3 = nn.Hardswish() if use_hs else nn.ReLU(inplace=True) self.shortcut = nn.Sequential() if stride == 1 and in_channels != out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(out_channels), ) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.hs1(out) out = self.conv2(out) out = self.bn2(out) out = self.hs2(out) if self.use_se: out = self.se(out) out = self.conv3(out) out = self.bn3(out) out = self.hs3(out) out += self.shortcut(x) if self.stride == 1 else out return out class SEBlock(nn.Module): def __init__(self, channels, reduction=4): super(SEBlock, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channels, channels // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channels // reduction, channels, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) 这是一个 MobileNetV3 的实现,可以用于图像分类任务。其中,width_mult 参数可以控制模型的宽度,可以根据实际情况进行调整。
以下是一个使用 PyTorch 实现的 MobileNetV3 代码示例: python import torch.nn as nn import torch.nn.functional as F class MobileNetV3(nn.Module): def __init__(self, num_classes=1000, width_mult=1.0): super(MobileNetV3, self).__init__() # Define the MobileNetV3 architecture self.conv1 = nn.Conv2d(3, int(16 * width_mult), kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(int(16 * width_mult)) self.hs1 = nn.ReLU6(inplace=True) self.bottlenecks = nn.Sequential( Bottleneck(int(16 * width_mult), int(16 * width_mult), 3, 2, False, width_mult), Bottleneck(int(16 * width_mult), int(24 * width_mult), 3, 2, False, width_mult), Bottleneck(int(24 * width_mult), int(24 * width_mult), 3, 1, False, width_mult), Bottleneck(int(24 * width_mult), int(40 * width_mult), 5, 2, True, width_mult), Bottleneck(int(40 * width_mult), int(40 * width_mult), 5, 1, True, width_mult), Bottleneck(int(40 * width_mult), int(80 * width_mult), 3, 2, False, width_mult), Bottleneck(int(80 * width_mult), int(80 * width_mult), 3, 1, False, width_mult), Bottleneck(int(80 * width_mult), int(112 * width_mult), 5, 1, True, width_mult), Bottleneck(int(112 * width_mult), int(112 * width_mult), 5, 1, True, width_mult), Bottleneck(int(112 * width_mult), int(160 * width_mult), 5, 2, True, width_mult), Bottleneck(int(160 * width_mult), int(160 * width_mult), 5, 1, True, width_mult), Bottleneck(int(160 * width_mult), int(320 * width_mult), 3, 1, False, width_mult), ) self.conv2 = nn.Conv2d(int(320 * width_mult), int(1280 * width_mult), kernel_size=1, stride=1, padding=0, bias=False) self.bn2 = nn.BatchNorm2d(int(1280 * width_mult)) self.hs2 = nn.ReLU6(inplace=True) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout(p=0.2, inplace=True) self.fc = nn.Linear(int(1280 * width_mult), num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.hs1(x) x = self.bottlenecks(x) x = self.conv2(x) x = self.bn2(x) x = self.hs2(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.fc(x) return x class Bottleneck(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, use_se, width_mult): super(Bottleneck, self).__init__() # Define the Bottleneck architecture mid_channels = int(out_channels / 6) self.conv1 = nn.Conv2d(in_channels, mid_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(mid_channels) self.hs1 = nn.ReLU6(inplace=True) self.conv2 = nn.Conv2d(mid_channels, mid_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=mid_channels, bias=False) self.bn2 = nn.BatchNorm2d(mid_channels) self.hs2 = nn.ReLU6(inplace=True) if use_se: self.se = SEModule(mid_channels, width_mult) else: self.se = None self.conv3 = nn.Conv2d(mid_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(out_channels) self.hs3 = nn.ReLU6(inplace=True) self.use_res_connect = (stride == 1 and in_channels == out_channels) def forward(self, x): identity = x x = self.conv1(x) x = self.bn1(x) x = self.hs1(x) x = self.conv2(x) x = self.bn2(x) x = self.hs2(x) if self.se is not None: x = self.se(x) x = self.conv3(x) x = self.bn3(x) if self.use_res_connect: x += identity x = self.hs3(x) return x class SEModule(nn.Module): def __init__(self, channels, width_mult): super(SEModule, self).__init__() # Define the Squeeze-and-Excitation (SE) module architecture self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc1 = nn.Conv2d(channels, int(channels * width_mult), kernel_size=1, stride=1, padding=0, bias=True) self.hs1 = nn.ReLU6(inplace=True) self.fc2 = nn.Conv2d(int(channels * width_mult), channels, kernel_size=1, stride=1, padding=0, bias=True) self.hs2 = nn.Sigmoid() def forward(self, x): identity = x x = self.avgpool(x) x = self.fc1(x) x = self.hs1(x) x = self.fc2(x) x = self.hs2(x) x = identity * x return x 这是一个基于 MobileNetV3 的轻量级卷积神经网络,可以用于图像分类等任务。
好的,以下是使用 PyTorch 框架复现 MobileNet V2 的代码和注释文档。 python import torch import torch.nn as nn class Block(nn.Module): '''Depthwise convolutional block.''' def __init__(self, in_channels, out_channels, stride=1, expansion=6): super(Block, self).__init__() self.stride = stride self.in_channels = in_channels self.out_channels = out_channels self.use_residual = self.stride == 1 and self.in_channels == self.out_channels self.conv1 = nn.Sequential( nn.Conv2d(in_channels, in_channels * expansion, kernel_size=1, bias=False), nn.BatchNorm2d(in_channels * expansion), nn.ReLU6(inplace=True) ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels * expansion, in_channels * expansion, kernel_size=3, stride=stride, padding=1, groups=in_channels * expansion, bias=False), nn.BatchNorm2d(in_channels * expansion), nn.ReLU6(inplace=True) ) self.conv3 = nn.Sequential( nn.Conv2d(in_channels * expansion, out_channels, kernel_size=1, bias=False), nn.BatchNorm2d(out_channels), ) def forward(self, x): residual = x out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) if self.use_residual: out += residual return out class MobileNetV2(nn.Module): '''MobileNetV2 implementation.''' def __init__(self, num_classes=1000, width_mult=1.0): super(MobileNetV2, self).__init__() self.num_classes = num_classes # Define the network architecture self.features = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU6(inplace=True), Block(32, 16, stride=1, expansion=1), Block(16, 24, stride=2, expansion=6), Block(24, 24, stride=1, expansion=6), Block(24, 32, stride=2, expansion=6), Block(32, 32, stride=1, expansion=6), Block(32, 32, stride=1, expansion=6), Block(32, 64, stride

最新推荐

torch_cluster-1.6.0-cp38-cp38-win_amd64.whl.zip

需要配和指定版本torch-1.10.1+cpu使用,请在安装该模块前提前安装torch-1.10.1+cpu,无需安装cuda

哈希排序等相关算法知识

哈希排序等相关算法知识

混合神经编码调制的设计和训练方法

可在www.sciencedirect.com在线获取ScienceDirectICTExpress 8(2022)25www.elsevier.com/locate/icte混合神经编码调制:设计和训练方法Sung Hoon Lima,Jiyong Hana,Wonjong Noha,Yujae Songb,Sang-WoonJeonc,a大韩民国春川,翰林大学软件学院b韩国龟尾国立技术学院计算机软件工程系,邮编39177c大韩民国安山汉阳大学电子电气工程系接收日期:2021年9月30日;接收日期:2021年12月31日;接受日期:2022年1月30日2022年2月9日在线发布摘要提出了一种由内码和外码组成的混合编码调制方案。外码可以是任何标准的二进制具有有效软解码能力的线性码(例如,低密度奇偶校验(LDPC)码)。内部代码使用深度神经网络(DNN)设计,该深度神经网络获取信道编码比特并输出调制符号。为了训练DNN,我们建议使用损失函数,它是受广义互信息的启发。所得到的星座图被示出优于具有5G标准LDPC码的调制�

利用Pandas库进行数据分析与操作

# 1. 引言 ## 1.1 数据分析的重要性 数据分析在当今信息时代扮演着至关重要的角色。随着信息技术的快速发展和互联网的普及,数据量呈爆炸性增长,如何从海量的数据中提取有价值的信息并进行合理的分析,已成为企业和研究机构的一项重要任务。数据分析不仅可以帮助我们理解数据背后的趋势和规律,还可以为决策提供支持,推动业务发展。 ## 1.2 Pandas库简介 Pandas是Python编程语言中一个强大的数据分析工具库。它提供了高效的数据结构和数据分析功能,为数据处理和数据操作提供强大的支持。Pandas库是基于NumPy库开发的,可以与NumPy、Matplotlib等库结合使用,为数

帮我用C++和Qt写一个m*n的矩阵最小路径和可视化,要求用格子展示,最小路径采用其它的颜色标记

好的,以下是一个基本的实现: 1. 首先需要定义一个矩阵类来存储矩阵数据和计算最小路径和。 ```c++ class Matrix{ public: Matrix(int rows, int cols); ~Matrix(); void setValue(int i, int j, int value); //设置元素的值 int getValue(int i, int j); //获取元素的值 int getRows(); //获取行数 int getCols(); //获取列数 int getMinPathSum(); //获取最

基于android的视频播放器的设计与实现--大学毕业论文.doc

基于android的视频播放器的设计与实现--大学毕业论文.doc

"基于自定义RC-NN的优化云计算网络入侵检测"

⃝可在www.sciencedirect.com在线获取ScienceDirectICTExpress 7(2021)512www.elsevier.com/locate/icte基于自定义RC-NN和优化的云计算网络入侵检测T.蒂拉加姆河ArunaVelTech Rangarajan博士Sagunthala研发科学技术研究所,印度泰米尔纳德邦钦奈接收日期:2020年8月20日;接收日期:2020年10月12日;接受日期:2021年4月20日2021年5月5日网上发售摘要入侵检测是保证信息安全的重要手段,其关键技术是对各种攻击进行准确分类。入侵检测系统(IDS)被认为是云网络环境中的一个重要安全问题。在本文中,IDS给出了一个创新的优化定制的RC-NN(递归卷积神经网络),提出了入侵检测与蚁狮优化算法的基础上。通过这种方法,CNN(卷积神经网络)与LSTM(长短期记忆)混合。因此,利用云的网络层识别的所有攻击被有效地分类。下面所示的实验结果描述了具有高精度的IDS分类模型的呈现,从而�

Shell脚本中的并发编程和多线程操作

# 一、引言 ## 1.1 介绍Shell脚本中并发编程和多线程操作的概念与意义 在Shell编程中,并发编程和多线程操作是指同时执行多个任务或操作,这在处理大规模数据和提高程序执行效率方面非常重要。通过并发编程和多线程操作,可以实现任务的同时执行,充分利用计算资源,加快程序运行速度。在Shell脚本中,也可以利用并发编程和多线程操作来实现类似的效果,提高脚本的执行效率。 ## 1.2 探讨并发编程和多线程在IT领域的应用场景 在IT领域,并发编程和多线程操作被广泛应用于各种场景,包括但不限于: - Web服务器中处理并发请求 - 数据库操作中的并发访问和事务处理 - 大数据处理和分析

多个print输出在同一行

可以在print函数中使用end参数来控制输出结尾的字符,默认情况下为换行符。将end参数的值设置为空字符串即可实现多个print输出在同一行。例如: ``` print("Hello", end="") print("World", end="") ``` 这样就会输出"HelloWorld",而不是分两行输出。

JDK17-troubleshooting-guide.pdf

JDK17-troubleshooting-guide