matlab 计算图像的峰值信噪比并显示
时间: 2023-06-17 08:07:50 浏览: 114
计算图像的峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)可以使用MATLAB内置函数`psnr`实现。以下是一个示例代码:
```matlab
% 读取图像
img = imread('lena.jpg');
% 添加高斯噪声
noisy_img = imnoise(img, 'gaussian', 0.02);
% 计算峰值信噪比
psnr_value = psnr(img, noisy_img);
% 显示图像和峰值信噪比
figure;
subplot(1,2,1); imshow(img); title('原始图像');
subplot(1,2,2); imshow(noisy_img); title('加噪图像, PSNR=' + string(psnr_value));
```
在这个示例中,我们首先读取了名为`lena.jpg`的图像。然后使用`imnoise`函数添加了高斯噪声,噪声水平设为0.02。接着,使用`psnr`函数计算了原始图像和加噪图像之间的峰值信噪比,并将结果存储在变量`psnr_value`中。最后,使用`subplot`和`imshow`函数分别显示了原始图像和加噪图像,并在加噪图像下方显示了计算得到的峰值信噪比。
注意,PSNR的值越高,表示图像质量越好,通常认为PSNR值在30以上的图像质量较高。
相关问题
matlab 计算图片峰值信噪比的程序
以下是 Matlab 计算图像峰值信噪比(PSNR)的示例代码:
```matlab
% 读取原图和处理后的图像
original_image = imread('original_image.jpg');
processed_image = imread('processed_image.jpg');
% 计算峰值信噪比(PSNR)
mse = sum(sum((double(original_image) - double(processed_image)).^2)) / (size(original_image, 1) * size(original_image, 2));
psnr = 10 * log10(255^2 / mse);
% 显示结果
fprintf('PSNR = %f dB\n', psnr);
```
注意,上述示例中的“original_image.jpg”和“processed_image.jpg”需要替换为实际的图像文件名。此外,该代码假设图像的灰度级范围为0到255。如果你的图像的灰度级范围不同,请相应地修改代码。
MATLAB计算峰值信噪比,并显示在静态文本框内
计算峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)可以使用MATLAB中的`psnr`函数。假设原始图像为`I`,压缩后的图像为`I_compressed`,代码如下:
```
% 计算峰值信噪比
peaksnr = psnr(I, I_compressed);
% 将峰值信噪比显示在静态文本框内
handles.text_psnr.String = num2str(peaksnr);
```
其中,`handles.text_psnr`是静态文本框的句柄,可以根据实际需要进行修改。`num2str`函数用于将数值转化为字符串,以便在静态文本框中显示。
阅读全文