apriori算法实验
时间: 2025-01-07 19:48:50 浏览: 10
### APRIORI算法实验与实现
#### 1. 理解APRIORI算法的核心概念
APRIORI算法是一种经典的关联规则挖掘技术,旨在从大型数据集中找出频繁项集并生成强关联规则。为了有效执行此操作,该算法依赖于两个主要参数:最小支持度(minimum support)和最小置信度(minimum confidence)[^1]。
#### 2. 实验设计思路
在准备进行APRIORI算法的实验之前,需先定义好目标数据库以及预期要解决的具体问题。通常情况下,会选取具有代表性的交易记录作为输入数据源,并设置合理的最小支持度阈值以筛选出有意义的频繁项集。之后再利用这些频繁项集构建满足条件的关联规则[^1]。
#### 3. Python代码示例
下面是一个简单的Python版本APRIORI算法实现:
```python
from collections import defaultdict, Counter
import itertools
def apriori(transactions, min_support=0.5):
# 记录所有候选集合的支持计数
item_counts = defaultdict(int)
# 初始化单个商品的支持度统计
for transaction in transactions:
for item in transaction:
item_counts[frozenset([item])] += 1
num_transactions = float(len(transactions))
# 过滤掉低于最低支持度的商品组合
frequent_items = set()
current_frequent_k_itemsets = []
for key, value in item_counts.items():
if (value / num_transactions) >= min_support:
frequent_items.add(key)
current_frequent_k_itemsets.append(key)
k = 2
while True:
new_candidates = generate_new_candidate_sets(current_frequent_k_itemsets, k=k)
candidate_counts = Counter()
for transaction in transactions:
for candidate_set in new_candidates:
if all(item in transaction for item in candidate_set):
candidate_counts[candidate_set] += 1
next_level_frequent_itemsets = [
frozenset(candidate_set)
for candidate_set, count in candidate_counts.items()
if ((count/num_transactions)>=min_support)]
if not next_level_frequent_itemsets:
break
frequent_items.update(next_level_frequent_itemsets)
current_frequent_k_itemsets = next_level_frequent_itemsets
k+=1
return frequent_items
def generate_new_candidate_sets(frequent_itemset_list, k=None):
"""Generate the immediate supersets of length `k` from a list."""
candidates = []
n = len(frequent_itemset_list)
for i in range(n):
for j in range(i+1,n):
l1=list(frequent_itemset_list[i])
l2=list(frequent_itemset_list[j])
if sorted(l1[:-1]) == sorted(l2[:-1]):
unioned=frozenset(set.union(*map(set,[l1,l2])))
if len(unioned)==k and check_subset_frequency(unioned,frequent_itemset_list,k-1):
candidates.append(tuple(sorted(list(unioned))))
return candidates
def check_subset_frequency(candiate_set, prev_freq_itemsets, subset_size):
subsets = map(lambda s: tuple(s),itertools.combinations(candiate_set,subset_size))
for ss in subsets:
if frozenset(ss) not in prev_freq_itemsets:
return False
return True
if __name__=='__main__':
sample_data=[
['bread', 'milk'],
['bread', 'diaper','beer','egg'],
['milk', 'diaper','beer','cola'],
['bread', 'milk', 'diaper','beer'],
['bread', 'milk', 'diaper','cola']
]
result = apriori(sample_data,min_support=0.6)
print('Frequent Item Sets:',result)
```
这段程序实现了基本的功能框架,可以根据实际需求调整参数或优化性能[^2]。
阅读全文