ppo算法python实现
时间: 2023-09-30 15:09:15 浏览: 128
PPO(Proximal Policy Optimization)算法是一种强化学习算法,用于训练策略优化模型。下面是一个使用Python实现PPO算法的简单示例代码:
```python
import gym
import numpy as np
import tensorflow as tf
class PPOAgent:
def __init__(self, state_dim, action_dim, action_bound):
self.state_dim = state_dim
self.action_dim = action_dim
self.action_bound = action_bound
self.actor = self.build_actor()
self.critic = self.build_critic()
self.actor_optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
self.critic_optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
def build_actor(self):
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(self.state_dim,)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(self.action_dim, activation='tanh')
])
return model
def build_critic(self):
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(self.state_dim,)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(1)
])
return model
def choose_action(self, state):
state = np.expand_dims(state, axis=0)
action = self.actor.predict(state)[0]
action = np.clip(action, -self.action_bound, self.action_bound)
return action
def compute_loss(self, states, actions, advantages, old_probs):
with tf.GradientTape() as tape:
new_probs = self.actor(states, training=True)
critic_values = tf.squeeze(self.critic(states, training=True), axis=-1)
ratio = tf.exp(new_probs - old_probs)
clipped_ratio = tf.clip_by_value(ratio, 1 - epsilon, 1 + epsilon)
surrogate_1 = ratio * advantages
surrogate_2 = clipped_ratio * advantages
actor_loss = -tf.reduce_mean(tf.minimum(surrogate_1, surrogate_2))
critic_loss = tf.reduce_mean(tf.square(critic_values - advantages))
total_loss = actor_loss + critic_loss
actor_gradients = tape.gradient(total_loss, self.actor.trainable_variables)
critic_gradients = tape.gradient(critic_loss, self.critic.trainable_variables)
self.actor_optimizer.apply_gradients(zip(actor_gradients, self.actor.trainable_variables))
self.critic_optimizer.apply_gradients(zip(critic_gradients, self.critic.trainable_variables))
def train(self, env, batch_size=64, epochs=10, gamma=0.99, epsilon=0.2):
for epoch in range(epochs):
states = []
actions = []
rewards = []
values = []
old_probs = []
state = env.reset()
while True:
action = self.choose_action(state)
next_state, reward, done, _ = env.step(action)
states.append(state)
actions.append(action)
rewards.append(reward)
values.append(self.critic.predict(np.expand_dims(state, axis=0))[0])
old_probs.append(self.actor.predict(np.expand_dims(state, axis=0))[0])
state = next_state
if done:
break
states = np.array(states)
actions = np.array(actions)
rewards = np.array(rewards)
values = np.array(values)
old_probs = np.array(old_probs)
returns = np.zeros_like(rewards)
advantages = np.zeros_like(rewards)
if not done:
last_value = self.critic.predict(np.expand_dims(state, axis=0))[0]
else:
last_value = 0
for t in reversed(range(len(rewards))):
returns[t] = rewards[t] + gamma * last_value
last_value = returns[t]
advantages[t] = returns[t] - values[t]
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
for _ in range(len(states) // batch_size):
indices = np.random.choice(len(states), batch_size)
batch_states = states[indices]
batch_actions = actions[indices]
batch_advantages = advantages[indices]
batch_old_probs = old_probs[indices]
self.compute_loss(batch_states, batch_actions, batch_advantages, batch_old_probs)
```
这是一个简单的PPO算法实现示例,使用了tensorflow框架。需要注意的是,代码中的`state_dim`表示状态维度,`action_dim`表示动作维度,`action_bound`表示动作的取值范围。你可以根据你的具体问题进行调整和修改。此外,你还需要安装相应的依赖库(如gym和tensorflow)。希望对你有所帮助!
阅读全文