ppo算法简单实例 带完整代码和代码注释
时间: 2024-10-17 12:01:30 浏览: 63
PPO(Proximal Policy Optimization)是一种在强化学习中常用的模型-free(无模型)优化算法,它通过策略梯度来更新策略网络。这里是一个简单的PPO算法的Python实现(使用PyTorch库),包括训练环境设置、策略网络、以及核心的PPO更新步骤。由于篇幅原因,我将给出关键部分的代码,并附带简要解释。
```python
import torch
import gym
# 定义超参数
gamma = 0.99 # 奖励折扣率
clip_ratio = 0.2 # 剪切范围
num_epochs = 5 # 训练轮数
episodes_per_epoch = 10 # 每轮次的episode数
batch_size = 64 # 批量大小
# 创建环境
env = gym.make('CartPole-v0')
# 空的策略网络(简化版)
class PolicyNetwork(torch.nn.Module):
def __init__(self, state_dim, action_dim):
super().__init__()
self.fc1 = torch.nn.Linear(state_dim, 64)
self.fc2 = torch.nn.Linear(64, action_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
return torch.softmax(self.fc2(x), dim=1) # 输出动作概率分布
policy_net = PolicyNetwork(env.observation_space.shape[0], env.action_space.n)
# 定义优化器和损失函数
optimizer = torch.optim.Adam(policy_net.parameters(), lr=3e-4)
ppo_loss = torch.nn.CrossEntropyLoss()
def ppo_update(data):
old_states, actions, rewards, new_states, dones = data
# 新旧策略网络计算当前状态下的action log prob
old_log_probs = policy_net(old_states).gather(1, actions.unsqueeze(-1)).squeeze(-1)
new_log_probs = policy_net(new_states).gather(1, actions.unsqueeze(-1)).squeeze(-1)
# 根据新的策略计算优势值
values = policy_net(new_states).mean(dim=1)
returns = calculate_advantages(rewards, values, dones, gamma)
# Clipped PPO objective
ratios = (new_log_probs - old_log_probs).exp()
surr1 = ratios * returns
surr2 = torch.clamp(ratios, 1 - clip_ratio, 1 + clip_ratio) * returns
loss = -torch.min(surr1, surr2).mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 训练函数
def train():
for epoch in range(num_epochs):
total_reward = 0
for _ in range(episodes_per_epoch):
states = env.reset() # 获取初始状态
done = False
episode_data = []
while not done:
# 推荐行动并获取奖励
state = torch.tensor(states, dtype=torch.float32)
action_probs = policy_net(state)
action = torch.multinomial(action_probs, num_samples=1).item() # 随机采样
next_state, reward, done, _ = env.step(action)
total_reward += reward
# 存储数据用于后向传播
episode_data.append((states, action, reward, next_state, done))
states = next_state
if len(episode_data) > batch_size:
# 进行一次PPO更新
ppo_update(episode_data)
print(f"Epoch {epoch+1}/{num_epochs}, Total Reward: {total_reward}")
if __name__ == "__main__":
train()
```
这个示例简化了部分细节,实际应用中还需要添加一些功能,如存储过程、评估策略等。此外,对于复杂的环境,通常需要更精细的网络结构和更多的调试调整。如果你对特定部分有疑问,或者想了解如何应用到具体项目上,可以提问:
阅读全文