date_history, data_history = np.array(data.iloc[:, 0]), [x for item in np.array(data.iloc[:, 1]).tolist() for x in item] history_time_list = [datetime.datetime.strptime(date[0], '%Y/%m/%d %H:%M') for date in date_history] 代码 报错 'float' object is not iterable
时间: 2024-01-14 07:02:11 浏览: 131
这个错误提示说明在你的代码中,有一个变量是float类型的,但是你尝试用一个for循环对它进行迭代,而float类型是不可迭代的。根据你的代码,我猜测可能是第二行的问题。
你可以尝试将第二行代码改成如下形式,使用numpy的flatten()函数将多维数组展开成一维数组:
```
data_history = np.array(data.iloc[:, 1]).flatten().tolist()
```
这样就可以避免出现'float' object is not iterable这个错误了。
相关问题
data.fillna(method='ffill', inplace=True) date_history = pd.DataFrame(data.iloc[:, 0]) data_history = pd.DataFrame(data.iloc[:, 1]) date_history = np.array(date_history) data_history = [x for item in np.array(data_history).tolist() for x in item] 代码优化
可以将以上代码进行优化,如下所示:
```python
# 使用ffill方法填充缺失值
data.fillna(method='ffill', inplace=True)
# 将data的第一列作为date_history
date_history = data.iloc[:, 0].values.reshape(-1, 1)
# 将data的第二列作为data_history
data_history = data.iloc[:, 1].values.reshape(-1, 1)
# 将date_history和data_history合并成一个数组
history = np.concatenate([date_history, data_history], axis=1)
```
以上代码首先使用`fillna`方法填充缺失值,然后将`data`的第一列作为`date_history`,第二列作为`data_history`,并将它们合并成一个数组`history`。这样可以简化代码,并让代码更易读。
def data_processing(data): # 日期缺失,补充 data.fillna(method='ffill', inplace=True) date_history = pd.DataFrame(data.iloc[:, 0]) data_history = pd.DataFrame(data.iloc[:, 1]) date_history = np.array(date_history) data_history = [x for item in np.array(data_history).tolist() for x in item] # 缺失值处理 history_time_list = [] for date in date_history: date_obj = datetime.datetime.strptime(date[0], '%Y/%m/%d %H:%M') #将字符串转为 datetime 对象 history_time_list.append(date_obj) start_time = history_time_list[0] # 起始时间 end_time = history_time_list[-1] # 结束时间 delta = datetime.timedelta(minutes=15) #时间间隔为15分钟 time_new_list = [] current_time = start_time while current_time <= end_time: time_new_list.append(current_time) current_time += delta # 缺失位置记录 code_list = [] for i in range(len(time_new_list)): code_list = code_list history_time_list = history_time_list while (time_new_list[i] - history_time_list[i]) != datetime.timedelta(minutes=0): history_time_list.insert(i, time_new_list[i]) code_list.append(i) for i in code_list: data_history.insert(i, data_history[i - 1]) # 输出补充好之后的数据 data = pd.DataFrame({'date': time_new_list, 'load': data_history}) return data 代码优化
1. 可以将 `date_history` 和 `data_history` 的创建合并成一行:
```
date_history, data_history = np.array(data.iloc[:, 0]), [x for item in np.array(data.iloc[:, 1]).tolist() for x in item]
```
2. 可以在遍历 `date_history` 时,直接将字符串转为 datetime 对象,并添加到 `history_time_list` 中:
```
history_time_list = [datetime.datetime.strptime(date[0], '%Y/%m/%d %H:%M') for date in date_history]
```
3. 在记录缺失位置时,可以用 `zip()` 函数将 `time_new_list` 和 `history_time_list` 同时遍历,这样会更加简洁:
```
code_list = []
for new_time, history_time in zip(time_new_list, history_time_list):
while (new_time - history_time) != datetime.timedelta(minutes=0):
history_time_list.insert(i, new_time)
code_list.append(i)
```
4. 可以使用 `pandas` 的 `interpolate()` 方法来进行缺失值插值,这样可以省去很多代码:
```
data = data.set_index('date').resample('15T').interpolate().reset_index()
```
综上所述,优化后的代码如下:
```
def data_processing(data):
data.fillna(method='ffill', inplace=True)
date_history, data_history = np.array(data.iloc[:, 0]), [x for item in np.array(data.iloc[:, 1]).tolist() for x in item]
history_time_list = [datetime.datetime.strptime(date[0], '%Y/%m/%d %H:%M') for date in date_history]
start_time, end_time, delta = history_time_list[0], history_time_list[-1], datetime.timedelta(minutes=15)
time_new_list = [start_time + i * delta for i in range(int((end_time - start_time) / delta.total_seconds() / 60) + 1)]
data = pd.DataFrame({'date': time_new_list, 'load': data_history})
data = data.set_index('date').resample('15T').interpolate().reset_index()
return data
```
阅读全文