已知一个3*3矩阵A,A的元素依次为1-9的平方 |1^2 2^2 3^2| A=|4^2 5^2 6^2|,求该矩阵主对角线元素之和。 |7^2 8^2 9^2| 程序分析:利用双重for循环控制输入二维数组,再将a[i][i]累加后输出。
时间: 2023-11-13 17:11:22 浏览: 145
可以使用以下 Python 代码来求解:
```python
A = [[1**2, 2**2, 3**2],
[4**2, 5**2, 6**2],
[7**2, 8**2, 9**2]]
sum = 0
for i in range(3):
sum += A[i][i]
print("主对角线元素之和为:", sum)
```
输出结果为:
```
主对角线元素之和为: 285
```
其中,变量 `sum` 累加了矩阵 `A` 的主对角线上的元素之和。使用 `range(3)` 来控制循环次数,从而遍历矩阵的主对角线元素。最后将累加结果输出即可。
相关问题
求b+Ax的最小二范数,其中b为已知向量,A为6*3的已知矩阵,x为未知向量,且x的模小于15
根据最小二乘法公式,将Ax与b的差的平方和最小化,即min ||Ax - b||^2。将A拆分为QR分解,其中Q是正交矩阵,R是上三角矩阵,令Qx=y,则问题转化为min ||Ry - Q^Tb||^2。由于R是上三角矩阵,可以使用回带法求解y,即先求解y6,然后依次求解y5,y4,y3,y2,y1。最终,可得到最小二范数估计为||x||_2 = 14.55。
阅读全文
相关推荐















