六自由度机械臂空间画矩形代码,使用matlab
时间: 2023-09-24 12:11:04 浏览: 263
matlab仿真6自由度机械臂
好的,下面是一个简单的六自由度机械臂空间画矩形的 MATLAB 代码:
```
% 参数设置
L1 = 10; % 第一节臂长
L2 = 10; % 第二节臂长
L3 = 10; % 第三节臂长
L4 = 5; % 第四节臂长
L5 = 5; % 第五节臂长
L6 = 2; % 第六节臂长
% 空间画矩形
x = [0 10 10 0 0]; % 矩形x坐标
y = [0 0 10 10 0]; % 矩形y坐标
z = [0 0 0 0 0]; % 矩形z坐标
% 初始位置
q1 = 0;
q2 = 0;
q3 = 0;
q4 = 0;
q5 = 0;
q6 = 0;
% 机械臂末端坐标计算
T01 = DHMatrix(q1, 0, 0, pi/2); % 第一节变换矩阵
T12 = DHMatrix(q2-pi/2, L2, 0, 0); % 第二节变换矩阵
T23 = DHMatrix(q3, L3, 0, pi/2); % 第三节变换矩阵
T34 = DHMatrix(q4, 0, L4, -pi/2); % 第四节变换矩阵
T45 = DHMatrix(q5, 0, L5, pi/2); % 第五节变换矩阵
T56 = DHMatrix(q6, 0, L6, 0); % 第六节变换矩阵
T06 = T01*T12*T23*T34*T45*T56; % 末端变换矩阵
P06 = T06(1:3,4); % 末端坐标
% 机械臂关节角度计算
q = [q1 q2 q3 q4 q5 q6]; % 关节角度
J = Jacobian(q); % 雅可比矩阵
P0 = [0 0 0]'; % 基座坐标
P = [x' y' z']; % 矩形坐标
for i = 1:size(P,1)
Pd = P(i,:)'; % 目标点坐标
err = norm(Pd-P06); % 误差
while err > 0.01
% 控制算法
dx = (Pd-P06)/norm(Pd-P06); % 末端位置偏差
dq = pinv(J)*dx; % 关节角度偏差
q = q+dq'; % 更新关节角度
T01 = DHMatrix(q(1), 0, 0, pi/2); % 第一节变换矩阵
T12 = DHMatrix(q(2)-pi/2, L2, 0, 0); % 第二节变换矩阵
T23 = DHMatrix(q(3), L3, 0, pi/2); % 第三节变换矩阵
T34 = DHMatrix(q(4), 0, L4, -pi/2); % 第四节变换矩阵
T45 = DHMatrix(q(5), 0, L5, pi/2); % 第五节变换矩阵
T56 = DHMatrix(q(6), 0, L6, 0); % 第六节变换矩阵
T06 = T01*T12*T23*T34*T45*T56; % 末端变换矩阵
P06 = T06(1:3,4); % 末端坐标
err = norm(Pd-P06); % 更新误差
if isnan(err)
break;
end
end
end
```
其中,`DHMatrix` 函数用于计算 DH 参数的变换矩阵,`Jacobian` 函数用于计算雅可比矩阵。在此代码中,通过控制算法,将机械臂末端移动到矩形的每个顶点,从而完成空间画矩形的过程。需要注意的是,该代码中的控制算法为简单的逆运动学算法,实际应用中可能需要更加复杂的算法来保证机械臂的稳定性和精度。
阅读全文